
 Advanced search

Linux Journal Issue #97/May 2002

Features

Lowering Latency in Linux: Introducing a Preemptible Kernel by
Robert Love

Love explains just how this kernel patch does its magic.
How the PCI Hot Plug Driver Filesystem Works by Greg Kroah-
Hartman

Oh, the simplistic sweetness of a RAM-based filesystem.
Netfilter 2: in the POM of Your Hands by David A. Bandel

Now that you've got the basics, it's time for advanced iptables
building.

Taking Advantage of Linux Capabilities by Michael Bacarella
Bacarella gives the skinny on the security benefits of POSIX
capabilities in the Linux kernel.

Debugging Kernel Modules with User-Mode Linux by David Frascone
Keep your kernel (and hardware) safe by running it in user space
with UML.

Indepth

Crystal Space: an Open-Source 3-D Graphics Engine by Howard Wen
Finally the advantages of open source come to 3-D graphics
engines.

The Beowulf State of Mind by Glen Otero
An introduction to Beowulf clusters and a HOWTO on setting up
a Rocks cluster.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/097/5600.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5633.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5660.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5737.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5514.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5710.html

Interview

LJ Talks with Linux Kernel Developer Ted Ts'o by Don Marti and
Richard Vernon

Ted talks about current kernel development, his passion for
amateur radio and more.

Toolbox

At the Forge Databases and Zope by Reuven M. Lerner
Cooking with Linux Getting to Know You...My Kernel by Marcel
Gagné
Paranoid Penguin Understanding IDS for Linux by Pedro Bueno
GFX Tippet Studio and Nothing Real's Shake by Robin Rowe

Columns

Focus on Software Pessissism or Realism? by David A. Bandel
Focus on Embedded Systems Embedded Linux Targets Telecom
Infrastructure by Rick Lehrbaum
Linux for Suits It's Elemental—Natural Advantages by Doc Searls
Geek Law : The Role of Standards by Lawrence Rosen

Departments

Letters
upFRONT
From the Editor From the Editor by Richard Vernon
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5891.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5891.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5849.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5807.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5616.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5851.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5844.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5850.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5850.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5857.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5848.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5875.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5802.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5897.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5876.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5893.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Lowering Latency in Linux: Introducing a Preemptible

Kernel

Robert Love

Issue #97, May 2002

Whether you seek higher scores in Quake, are an audio enthusiast or want a
smoother desktop, lowering latency in the kernel is an important goal.

Performance measurements come in two flavors, throughput and latency. The
former is like the width of an expressway: the wider the expressway, the more
cars that can travel on it. The latter is like the speed limit: the faster it is, the
sooner cars get from point A to point B. Obviously, both quantities are
important to any task. Many jobs, however, require more of one quality than of
the other. Sticking to our roadway analogy, long-haul trucking may be more
sensitive to throughput, while a courier service may be more demanding on
latency. Lowering latency and increasing system response, through good old-
fashioned kernel work, is the topic of this article.

Audio/video processing and playback are two common beneficiaries of lowered
latency. Increasingly important to Linux, however, is its benefit to interactive
performance. With high latency, user actions, such as mouse clicks, go
unnoticed for too long—not the snappy responsive desktop users expect. The
system cannot get to the important process fast enough.

The problem, at least as far as the kernel is concerned, is the nonpreemptibility
of the kernel itself. Normally, if something sufficiently important happens, such
as an interactive event, the receiving application will get a priority boost and
subsequently find itself running. This is how a preemptively multitasked OS
works. Applications run until they use up some default amount of time (called a
timeslice) or until an important event occurs. The alternative is cooperative
multitasking, where applications must explicitly say, “I'm done!”, before a new
process can run. The problem, when running in the kernel, is that scheduling is
effectively cooperative.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Applications operate in one of two modes: either in user space, executing their
own code, or within the kernel, executing a system call or otherwise having the
kernel work on their behalf. When operating in the kernel, the process
continues running until it decides to stop, ignoring timeslices and important
events. If a more important process becomes runnable, it cannot be run until
the current process, if it is in the kernel, gets out. This process can take
hundreds of milliseconds.

Latency Solutions

The first and simplest solution to latency problems is to rewrite kernel
algorithms so that they take a minimal, bounded amount of time. The problem
is that this is already the goal; system calls are written to return quickly to user
space, yet we still have latency problems. Some algorithms simply do not scale
nicely.

The second solution is to insert explicit scheduling points throughout the
kernel. This approach, taken by the low-latency patches, finds problem areas in
the kernel and inserts code to the effect of “Anyone need to run? If so, run!” The
problem with this solution is that we cannot possibly hope to find and fix all
problem areas. Nonetheless, testing shows that these patches do a good job.
What we need, however, is not a quick fix but a solution to the problem itself.

The Preemptible Kernel

A proper solution is removing the problem altogether by making the kernel
preemptible. Thus, if something more important needs to run, it will run,
regardless of what the current process is doing. The obstacle here, and the
reason Linux did not do this from the start, is that the kernel would need to be
re-entrant. Thankfully, the issues of preemption are solved by existing SMP
(symmetric multiprocessing) support. By taking advantage of the SMP code, in
conjunction with some other simple modifications, the kernel can be made
preemptible.

The programmers at MontaVista provided the initial implementation of kernel
preemption. First, the definition of a spin lock was modified to include marking
a “nonpreemptible” region. Therefore, we do not preempt while holding a spin
lock, just as we do not enter a locked region concurrently under SMP. Of
course, on uniprocessor systems we do not actually make the spin locks
anything other than the preemption markers. Second, code was modified to
ensure that we do not preempt inside a bottom half or inside the scheduler
itself. Finally, the return from interrupt code path was modified to reschedule
the current process if needed.

On UP, spin_lock is defined as preempt_disable, and spin_unlock is defined as
preempt_enable. On SMP, they also perform the normal locking. So what do
these new routines do?

The nestable preemption markers preempt_disable and preempt_enable
operate on preempt_count, a new integer stored in each task_struct.
preempt_disable effectively is:

++current->preempt_count;
barrier();

and preempt_enable is:

--current->preempt_count;
barrier();
if (unlikey(!current->preempt_count
 && current->need_resched))
 preempt_schedule();

The result is we do not preempt when the count is greater than zero. Because
spin locks are already in place to protect critical regions for SMP machines, the
preemptible kernel now has its protection too.

preempt_schedule implements the entry to schedule itself. It sets a flag in the
current process to signify it was preempted, calls schedule and, upon return,
unsets the flag:

asmlinkage void preempt_schedule(void)
{
 do {
 current->preempt_count += PREEMPT_ACTIVE;
 schedule();
 current->preempt_count -= PREEMPT_ACTIVE;
 } while (current->need_resched);
}

The other entry to preempt_schedule is via the interrupt return path. When an
interrupt handler returns, it checks the preempt_count and need_resched
variables, just as preempt_enable does (although the interrupt return code in
entry.S is in assembly). The ideal scenario is to cause a preemption here
because it is an interrupt that typically sets need_resched due to a hardware
event. It is not always possible, however, to preempt immediately off the
interrupt, as a lock may be held. That is why we also check for preemption off
preempt_enable.

The Results

Thus, with the preemptive kernel patch, we can reschedule tasks as soon as
they need to be run, not only when they are in user space. What are the results
of this?

Process-level response is improved twentyfold in some cases. (See Figure 1, a
standard kernel, vs. Figure 2, a preemptible kernel.) These graphs are the
output of Benno Senoner's useful latencytest tool, which simulates the
buffering of an audio sample under load. The red line in the graphs represents
the amount of latency beyond which audio dropouts are perceptible to
humans. Notice the multiple spikes in the graph in Figure 1 compared to the
smooth low graph in Figure 2.

Figure 1. Result of a Latency Test Benchmark on a Standard Kernel

https://secure2.linuxjournal.com/ljarchive/LJ/097/5600f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5600f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5600f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5600f2.large.jpg

Figure 2. Result of a Latency Test Benchmark on a Preemptible Kernel

The improvement in latencytest corresponds to a reduction in both worst-case
and average latency. Further tests show that the average system latency over a
range of workloads is now in the 1-2ms range.

A common complaint against the preemptible kernel centers on the added
complexity. Complexity, opponents argue, decreases throughput. Fortunately,
the preemptive kernel patch improves throughput in many cases (see Table 1).
The theory is that when I/O data becomes available, a preemptive kernel can
wake an I/O-bound process more quickly. The result is higher throughput, a
nice bonus. The net result is a smoother desktop, less audio dropout under
load, better application response and improved fairness to high-priority tasks.

Table 1. Throughput Test: dbech Runs

Changes to Programming Semantics

Kernel hackers are probably thinking, “How does this affect my code?” As
discussed above, the preemptible kernel leverages existing SMP support. This
makes the preemptible kernel patch relatively simple and the impact to coding
practices relatively minor. One change, however, is required. Currently, per-
CPU data (data structures unique to each CPU) do not require locking. Because
they are unique to each CPU, a task on another CPU cannot mangle the first
CPU's data. With preemption, however, a process on the same CPU can find
itself preempted, and a second process can then trample on the data of the

https://secure2.linuxjournal.com/ljarchive/LJ/097/5600f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5600f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5600t1.html

first. While this normally is protected by the existing SMP locks, per-CPU data
does not require locks. Data that does not have a lock, because it is protected
by its nature, is considered to be “implicitly locked”. Implicitly locked data and
preemption do not get along. The solution, thankfully, is simple: disable
preemption around access to the data. For example:

int catface[NR_CPUS];
preempt_disable();
catface[smp_processor_id()] = 1; /* index catface
 by CPU number */
/* operate on catface */
preempt_enable();

The current preemption patch provides protection for the existing implicitly
locked data in the kernel. Thankfully, it is relatively infrequent. New kernel
code, however, will require protection if used in a preemptible kernel.

Work for the Future

We still have work to do. Once the kernel is preemptible, work can begin on
reducing the duration of long-held locks. Because the kernel is nonpreemptible
when a lock is held, the duration locks are held corresponding to the system's
worst-case latency. The same work that benefits SMP scalability (finer-grained
locking) will lower latency. We can rewrite algorithms and locking rules to
minimize lock held time. Eradicating the BKL will help too.

Identifying the long-held locks can be as difficult as rewriting them. Fortunately,
there is the preempt-stats patch that measures nonpreemptibility times and
reports their cause. This tool is useful for pinpointing the cause of latency for a
specific workload (e.g., a game of Quake).

What is needed is a goal. Kernel developers need to consider any lock duration
that extends over a certain threshold, a bug for example, 5ms on a reasonably
modern system. With that goal in mind, we can pinpoint and ultimately
eliminate the areas of high latency and lock contention.

Conclusion

The Linux community is large and diverse, and Linux is used in embedded
systems all the way through large servers. Preemptive kernel technology
provides benefits beyond real-time applications. Desktop users, gamers and
multimedia developers alike stand to benefit from reduced latency. A solution
is needed for both the 2.4 and 2.5 kernel trees; perhaps the same solution for
each is not best. With 2.5 under development, however, now is the time to
implement a feature that provides an immediate gain, as well as the framework
for further improvement. The result will be a better kernel.

Resources

Robert Love (rml@tech9.net) is a Mathematics and Computer Science student
at the University of Florida. When not hacking Linux, Robert enjoys auto racing,
Thai food and punk rock.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5600s1.html
mailto:rml@tech9.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

How the PCI Hot Plug Driver Filesystem Works

Greg Kroah-Hartman

Issue #97, May 2002

Greg describes how the PCI Hot Plug core implements a RAM-based filesystem
and how you can do the same for your drivers.

On May 14, 2001, H. Peter Anvin announced to the linux-kernel mailing list:
“Linus Torvalds has requested a moratorium on new device number
assignments. His hope is that a new and better method for device space
handling will emerge as a result.”

Peter is the “Linux Assigned Names and Numbers Authority”, meaning that all
kernel driver authors had to go through him to get a major and minor number
pair for their drivers. The freeze on assigning new numbers naturally caused a
lot of discussion about what this “better method” for device space handling
would be. One idea that emerged was making a driver that could implement a
filesystem to control the user-space interaction with the driver.

During this time, I was cleaning up the PCI Hot Plug driver written by Compaq
for their servers. A PCI Hot Plug driver allows you to shut down a PCI card while
the machine is running, pull out the card, replace it with another one and then
power that card back on, if you have the proper hardware on your
motherboard. This is very useful for servers that cannot be shut down but need
to have new network cards added, faulty devices removed and other service-
type operations.

The PCI Hot Plug driver was originally written to interact with user space as a
character device; ioctl calls were made to the device node to shut down PCI
slots, power up PCI slots, turn PCI slot indicator lights on and off and run
different manufacturing tests on the device. To get information about the
number of different PCI slots in the system and the state of the slots (power
and indicator status), a /proc directory tree was used. This directory tree was
read-only.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

As I worked to split the PCI Hot Plug core functionality out of the Compaq
driver, so that other PCI Hot Plug drivers would have a common interface for
the user, I realized that a single filesystem would be a better fit both to show
PCI-slot information and to allow user control. All information and control over
the driver would be handled from one place, instead of having two different
types of interfaces.

The PCI Hot Plug driver core has been merged into the main kernel tree as of
2.4.15, and it exports a filesystem called pcihpfs that is used to control the
driver. When you mount the filesystem, you get a tree with directories called 3,
4, 5 and so on, which are the physical numbers of the PCI slots. Every file in a
slot directory can be read to find the value for that bit of information about the
slot. The files power and attention can be written to in order to set the power (0
or 1) or attention (0 or 1) values. The test file is used to send hardware test
commands to the hardware. The adapter file detects if an adapter is present in
that slot or not, and the latch file describes the position of the physical latch (if
any) for that slot.

So, you can enable the power in slot 5 to be turned with:

echo 1 > 5/power

from the pcihpfs root. If a PCI card is present in that slot, the whole PCI-
initialization sequence will execute for that card, including a call out to /sbin/
hotplug with the PCI information, so that the module for that device can be
loaded automatically by the system [see Greg's Kernel Korner in the June 2002
issue of LJ].

Because of this filesystem, a user-space program does not have to make special
ioctl() calls to a character device, allowing users to access a wider range of
options for how they want to control their devices.

The rest of this article describes how the PCI Hot Plug core implements a RAM-
based filesystem and how you can do the same thing for your drivers.

First, you need to declare the filesystem in your driver. To do this, use the
DECLARE_FSTYPE macro, which is defined in the include/linux/file.h file. The
pci_hotplug driver uses the DECLARE_FSTYPE macro in the following way:

static DECLARE_FSTYPE(pcihpfs_fs_type, "pcihpfs",
 pcihpfs_read_super, FS_SINGLE | FS_LITTER);

This creates a static variable of the type struct file_system_type called
pcihpfs_fs_type and initializes some of the structure's fields. The name field is
set to pcihpfs, which will be used by users in mounting our filesystem, so

choose a name that makes sense and is not currently in use by any other
filesystem in the kernel. We set the flags field to both FS_SINGLE and FS_LITTER.

FS_SINGLE means that, for this filesystem, we will have only one instance of the
superblock. Therefore, wherever the filesystem is mounted in the system, all
mountpoints will point to the same location in the filesystem (remember that
you can mount the same filesystem at different points in a directory tree). The
FS_LITTER option means that we want this filesystem to keep the tree in the
dcache. This is set because our filesystem will live entirely in RAM and will not
have a backing store of the data on any physical device, like a disk.

The read_super field of the pcihpfs_fs_type points to the function that will be
called when the kernel wants to read the superblock of our filesystem. A
superblock is the structure in a filesystem that is used to describe the entire
filesystem. The kernel will call this function when the filesystem is asked to be
mounted. When this function is called, we need to tell the kernel exactly what
our filesystem looks like.

But before our filesystem can be mounted, we need to tell the kernel that our
filesystem is present. This is done with a simple call to register_filesystem() with
our file_system_type as the only parameter. This is done in the pci_hotplug
module's initialization function with the following bit of code:

dbg("registering filesystem.\n");
result = register_filesystem(&pcihpfs_fs_type);
if (result) {
 err("register_filesystem failed with %d\n", result);
 goto exit;
}

Likewise, when the pci_hotplug module is being shut down, we unregister our
filesystem type with the following single line of code:

unregister_filesystem(&pcihpfs_fs_type);

Right after we register our filesystem, we want to create some virtual files that
will allow a user to read and write values that our driver wants to export and
change. If a user mounts the filesystem before he or she wants to create a file,
the kernel already will have created the filesystem at some virtual location.
Odds are that the filesystem has not been mounted, however, right after it is
created, we need to get the kernel to mount the filesystem before we can add a
file (otherwise our file creation fails, which prevents anyone from using that
file).

There are two different ways of solving this problem. The first way is to wait
until our filesystem is really mounted (we know this when our read_super
function is called) and then create all of our files. This method requires us to do

a bunch of work at mount time and to be constantly aware of whether our
filesystem is currently mounted; remember, we need to add or remove files at
different points in time. The usbdevfs filesystem (no relation to devfs, just an
unfortunate name similarity) is an example of a filesystem that implements this
solution to the problem.

However, we don't want to keep track constantly of when our filesystem is
mounted, and we would like to be able to create or remove a file whenever we
want. To do this second method, we need to tell the kernel to mount our
filesystem internally. This solves the problem of keeping track of the current
mount state. Listing 1 shows how we accomplish this.

Listing 1. Telling the Kernel to Mount the Filesystem Internally

Let's walk through Listing 1 to try to understand what it is doing and how it is
doing it. This is also a good example of how to do proper locking techniques for
when the kernel is running on a multiple-processor machine.

First we grab a spin lock, called mount_lock, with the line

spin_lock(&mount_lock);

This lock is used to protect our internal count if our filesystem is an example of
what is needed to do this properly. internally mounted. Okay, previously I
stated that we didn't want to keep track of whether we were mounted. Trust
me, this simple function, combined with a simple function to unmount the
filesystem (described later), is much easier to understand and work with than is
the option of trying to determine if we have been mounted by a user. For an
example of what is needed to do this properly, see the code in drivers/usb/
inode.c in the 2.4.18 and earlier kernels.

After we grab our spin lock, check to see if our internal mount variable has
been set:

if (pcihpfs_mount) {
 mntget(pcihpfs_mount);
 ++pcihpfs_mount_count;
 spin_unlock (&mount_lock);
 goto go_ahead;
}

If it has been set, we call mntget() to increment our internal mount count;
mntget() is a simple inline function in the include/linux/mount.h file. We then
increment our internal count variable, unlock our spin lock and jump to the end
of the function, as we are finished (yes, it's okay to use goto in the kernel,
sparingly).

https://secure2.linuxjournal.com/ljarchive/LJ/097/5633l1.html

Otherwise, we have not mounted this filesystem yet. So we unlock our spin
lock:

spin_unlock (&mount_lock);

and call kern_mount to mount our filesystem internally:

mnt = kern_mount (&pcihpfs_fs_type);
if (IS_ERR(mnt)) {
 err ("could not mount the fs...erroring out!\n");
 return -ENODEV;
}

We unlock our spin lock, as the kern_mount() function can take a long time and
may even cause the kernel to sleep and schedule another process. Remember
that you cannot hold a spin lock if schedule() can be called while the lock is held
—very bad things can happen if you do this.

Now that we have mounted our filesystem, we grab our spin lock again:

spin_lock (&mount_lock);

and check to see if our internal mount variable is still zero:

if (!pcihpfs_mount) {
 pcihpfs_mount = mnt;
 ++pcihpfs_mount_count;
 spin_unlock (&mount_lock);
 goto go_ahead;
}

“Wait!”, you are saying. “Why are we looking at pcihpfs_mount? We already
know that it is set to zero; we checked it just a few lines of code ago. Why check
again?” Well, remember the call to kern_mount() that we mentioned could
sleep? If our call to kern_mount() sleeps, and another process comes through
this same piece of code (remember we are running on more than one
processor, and multiple user threads could be happening at the same time),
then it could have already successfully mounted our filesystem and
incremented the pcihpfs_mount variable. Because of this, we need to check it
again.

So if another process has not come through and mounted our filesystem, we
save off the pointer to our now mounted filesystem for other functions to use
later, increment our internal count, unlock our lock and exit.

But if another process already has mounted our filesystem, we then do:

mntget(pcihpfs_mount);
++pcihpfs_mount_count;
spin_unlock (&mount_lock);
mntput(mnt);

This matches what we originally did in this same situation, back at the
beginning of the function.

The code to unmount our filesystem is much simpler:

static void remove_mount (void)
{
 struct vfsmount *mnt;
 spin_lock (&mount_lock);
 mnt = pcihpfs_mount;
 --pcihpfs_mount_count;
 if (!pcihpfs_mount_count)
 pcihpfs_mount = NULL;
 spin_unlock (&mount_lock);
 mntput(mnt);
 dbg("pcihpfs_mount_count = %d\n",
 pcihpfs_mount_count);
}

In this function, we simply grab our lock (the same lock we used when
mounting the filesystem), decrease our count of the number of times the
filesystem was mounted (we need to unmount for every time we mounted it)
and unlock our lock. Then we tell the kernel that we want to unmount the
filesystem with a call to mntput().

When the kernel wants to mount our filesystem—virtually because we called
kern_mount() or because a user mounted it first—our pcihpfs_read_super()
function is called. In it, we need to set up a few kernel structures that describe
what our filesystem looks like and list where to find the functions that the
kernel will call during the lifetime of the filesystem. This is done with the
following lines of code:

sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = PCIHPFS_MAGIC;
sb->s_op = &pcihpfs_ops;

With this, we state that our filesystem's block size is equal to the page cache
size; we set up our filesystem's magic number (must be unique across all
filesystems in the system) and point to our list of super_operations structure
functions.

Then we initialize the superblock's root inode by doing:

inode = pcihpfs_get_inode(sb, S_IFDIR | 0755, 0);
if (!inode) {
 dbg("%s: could not get inode!\n",__FUNCTION__);
 return NULL;
}

We will describe what pcihpfs_get_inode() does in a bit, but if that succeeds, we
then allocate the root dentry for the inode we just created and save that dentry
in the superblock structure:

root = d_alloc_root(inode);
if (!root) {
 dbg("%s: could not get root dentry!\n",
 __FUNCTION__);
 iput(inode);
 return NULL;
}
sb->s_root = root;
return sb;

That is all we need to do to initialize our superblock, and now the kernel has
mounted our filesystem.

pcihpfs_get_inode() is another function that we need to create for our
filesystem. It is called whenever we need to create a new inode for our
filesystem. Listing 2 shows what the pci_hotplug driver uses to do this.

Listing 2. Creating a New Inode

First we call the kernel new_inode() function in order to create and initialize a
new inode structure. If this succeeds, we then proceed to fill up a number of
the fields with the necessary information. The i_uid and i_gid members are set
to the current process' uid and gid values, insuring that whoever has the
permission to create the inode can access it later. The i_atime, i_mtime and
i_ctime members refer to the inode's access time, last modified time and time
of last change. We set all of these variables to the current time. If this inode is a
“regular” file type, then we point to our set of default_file_operations as the set
of functions that should be called whenever the inode is acted upon (open,
write, read, etc.). If this inode is a directory inode, we point to our default set of
directory inode functions. And if the inode is neither a regular inode nor a
directory inode, we then let the kernel initialize it with a call to
init_special_inode().

So, now that the filesystem is internally mounted, how do we create a file that a
user can read and write to? To do this, we call our fs_create_file() function,
passing in the name of the file we want to create, the mode of the file, a pointer
to the parent directory of the file (if this is NULL, we default to the root
directory of the filesystem), a pointer to a blob of data that we want assigned to
this file and a pointer to a set of file operations that will be called when the file
is accessed (see Listing 3).

Listing 3. Creating a File that a User Can Read and Write to

Here we call pcihpfs_create_by_name to get a new dentry with all of the
specified information. After our new dentry is created, we save off our data
pointer and point the dentry file_operations to the one we really want to have
called when this dentry's inode is accessed.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5633l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5633l3.html

The struct file_operations that we assign to an inode differs depending on the
kind of file we created. For the “power” file, which reports if the specific PCI slot
is on or off and also controls turning the slot on or off, we use the following
structure:

static struct file_operations power_file_operations = {
 read: power_read_file,
 write: power_write_file,
 open: default_open,
};

The interesting functions here are power_read_file and power_write_file. This is
what is called whenever the file is read from or written to. The other functions
are called when the different operations are made on the file. When open() is
called, the kernel calls default_open; when llseek is called, the kernel calls
default_file_lseek() and so on.

power_read_file() is a fairly simple function. All we want to do is return the
current power status of the specific PCI slot. The code to do this is:

page = (unsigned char *)__get_free_page(GFP_KERNEL);
if (!page)
 return -ENOMEM;
retval = get_power_status (slot, &value);
if (retval)
 goto exit;
len = sprintf (page, "%d\n", value);

This code allocates a chunk of memory (one page), gets the power status of a
specific PCI slot (through the call to get_power_status()) and then writes a string
representation of this status to the chunk of memory. The chunk of memory is
then copied into user space. Remember, the original memory is located in
kernel space; if you want the user to be able to see the memory, you need to
call

if (copy_to_user (buf, page, len)) {
 retval = -EFAULT; goto exit;
}

where buf is a pointer to the user-space buffer that was originally passed to the
read() call. So when a user issues the command:

cat /tmp/pcihpfs/slot2/power

the result is:

1

The power_write_file() function is equally as simple. We want the user to be
able to control the power of a PCI slot with a simple echo command, something
like

echo 1 > /tmp/pcihpfs/slot3/power

to turn on the power to the third PCI slot in the system. To do this, we need to
convert the string representation of the value that is passed to us into a binary
number and determine what slot-specific function to call (see Listing 4).

Listing 4. Controlling the Power of a PCI Slot

First we create a buffer that is one byte bigger than the user string and fill it
with zeros. Then we copy the buffer from user space into our kernel buffer,
convert it into a binary number with the simple_strtoul() function, and then act
on the value of the binary number by either calling disable_slot() or
enable_slot() on the specified PCI slot.

With those two simple functions mentioned above, we have now created a
driver interface that can be accessed by any user, without needing to make
special ioctl-type calls.

When the driver shuts down, it needs to remove all of the files that it had
originally created in the filesystem, in order to be allowed to unmount the
filesystem and free up all of the allocated memory. To do this, it calls the
fs_remove_file() function (see Listing 5).

Listing 5. Calling the fs_remove_file() Function

This function needs a pointer to the dentry that the call to fs_create_file
returned. It determines if the dentry has a valid parent, as you need the parent
of the dentry in order to be able to remove it. Then it calls into the kernel VFS
layer to remove the dentry (different calls are made depending on whether the
dentry refers to a directory or to a file).

We have described the basic filesystem functions that are needed to implement
a filesystem in a driver. For a better description of how all of the different
pieces work together, look at the code in the drivers/hotplug/pci_hotplug_core.c
file in the Linux kernel tree.

This article has been based on what is necessary for the 2.4 kernel. The 2.5
kernel should make things even easier, due to the exporting of most of the
ramfs functions. This will enable more code sharing among the RAM-based
filesystems, decreasing the amount of work a driver author has to do and
preventing the author from doing things incorrectly.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5633l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5633l5.html

Acknowledgements

I would like to thank Pat Mochel for writing the ddfs/driverfs code upon which a
lot of the pcihpfs code was originally based. driverfs is a new filesystem in the
2.5 kernel that will also help driver authors in exporting driver-specific
information into user space, as well as provide a tree of all devices, making
power management tools much easier.

I would also like to thank Al Viro for answering a lot of VFS-related questions
and for enabling a filesystem to be written with such a small amount of code.

Resources

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5633s1.html
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Netfilter 2: in the POM of Your Hands

David A. Bandel

Issue #97, May 2002

David gives detailed information on working with Netfilter. See next month's
Kernel Kornter for even more on this topic. those targets.

Following the publication of “Taming the Wild Netfilter” in the September 2001
issue of LJ [/article/4815], I received a number of e-mails, most asking for more
detailed information on working with Netfilter. To satisfy those requests, this
time I will delve a little deeper. For those of you who haven't read and tried out
a basic setup, I suggest you do so. This article is slightly more advanced and
intended for those who have a grasp, tenuous as it may be, on the basics as
described in the aforementioned article.

Preparing Your System for an iptables Upgrade

In order to get the most out of Netfilter and the user-land component iptables,
you'll need to upgrade both your kernel and iptables. While there's nothing
wrong with the kernel and iptables that came with your distribution, the
Netfilter code is under constant development. You also certainly might have no
idea what patches your distribution saw fit to include in the iptables area
(probably none). And, not all patches show up as Netfilter modules or iptables
match extensions. I do, however, recommend you don't try what's in this article
for the first time on your currently running firewall. Make sure you know what
to expect by experimenting on a test system.

The final recommendation in the paragraph above brings up a very important
point. This article is based on iptables-1.2.4 and the Linux kernel 2.4.17. Your
results will almost certainly vary if you use different versions. The principles will
be the same. Don't panic; just try to make some intelligent decisions about
what you want. Also understand that just as oil and water don't normally mix,
some of the choices you make regarding the modules you want will affect other
modules in the same way—that is, some modules don't mix well with others.
Looking at the 2.4.18-prepatches, some of the iptables patches applied for this

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/089/4815.html

article will be incorporated in 2.4.18. I suggest a look at the 2.4.18 Changelog
when this kernel version is finally released to see what you now won't need to
try to patch (the patch would fail anyway, detected or not—see below).

In this article, we'll be using Rusty Russell's patch-o-matic that will patch both
the iptables and kernel sources. This patch-o-matic (POM) isn't completely
automatic and will not attempt to patch anything without your approval. It also
will test the patch to be applied first to see if it applies correctly. If it doesn't,
you will be told and given several options. If a patch doesn't succeed, your best
and safest bet is to continue without applying it. But we'll see that as we go
along.

First, download the latest kernel version you want to use (available from
www.kernel.org). It can be 2.4.16 or higher. I always recommend waiting at
least a week after the latest stable version is out before trying it. That way, if
some small bug has made its way into the latest kernel (2.4.15's shutdown
filesystem corruption bug comes to mind), you'll probably know about it and
avoid a potentially nasty situation.

Using whatever method appeals to you, open and configure your new kernel.
This article won't cover kernel building, but a number of articles and sites can
bring you up to speed on this (the definitive guide is found in your kernel
source tree under Documentation/Changes). I suggest you configure as
modules all the Netfilter code. For now, you'll need to choose at least:

1. Code maturity level options-->Prompt for development and/or incomplete
code/drivers

and

2. Networking options-->Network packet filtering (replaces ipchains)

and from here also go ahead and enter

-->TCP/IP Networking-->IP: Netfilter Configuration (click to go to subpage)

3. On the IP: Netfilter Configuration subpage configure all modules.

If you want, select the IPv6 protocol, and you can then also configure the IPv6
Netfilter modules. You'll need to proceed at least as far as the “make dep” step
with this kernel to get everything prepared.

By the way, if you read near the bottom of the Help that comes with the
Network packet-filtering choice, you'll find you should choose Y if your system
will act as a router; otherwise select N, and if unsure, select no. I don't know

http://www.kernel.org

how sage this advice is. Even simple hosts often need the extra protection that
can be afforded by Netfilter. You'll have to decide that question for yourself
based on your best risk assessment for your network and how the host will be
used. We'll see how Netfilter is, in fact, used on machines other than routers,
below.

Digging into iptables

Once you have your kernel ready, download and open the latest iptables
(available from netfilter.samba.org). Change into the iptables directory, and
you're almost ready to start. If your kernel is not located in /usr/src/linux, then
you'll need to tell iptables where to find it. Additionally, if you don't want to
install iptables in /usr/local/, you'll need to specify where you want to install it.
There's a reason for each of these parameters (listed below) to be included.
Since iptables will be patching the kernel, it must know where to find the kernel,
and the iptables binary must know where to find the extensions. The location
of the extensions is hard-coded into the binary, so you can't arbitrarily move
things around later—you'll have to rebuild and re-install.

The following arguments are available for iptables builds:

• KERNEL_DIR=/path/to/kernel/source (default: /usr/src/linux)
• BINDIR=/path/to/install/binaries (default: /usr/local/bin)
• LIBDIR=/path/to/install/lib-extensions (default: /usr/local/lib)
• MANDIR=/path/to/install/manpages (default: /usr/local/man)

At this point, I must note that I often work in a chroot environment, particularly
when beating on the kernel sources, etc., so I don't inadvertently damage a
working system. However, I've found that the patch-o-matic doesn't work
properly chroot-ed. Normally, patch-o-matic will create a temporary directory
just above the kernel source tree where it patches and tests, then replaces the
kernel sources from there. In a chroot environment (at least on my systems),
this directory is never created, and the directory above the kernel source tree
becomes a mess as it fills with the kernel source. I've been remiss and not
taken the time to look at the problem sufficiently to identify the root cause. But
it's not important if you just back up your kernel source before continuing.

The first command you'll want to use (assuming the kernel source directory is
located in your $HOME directory) is:

make pending-patches KERNEL_DIR=$HOME/linux

You should have no problems with this target. It will tell you what patches it
wants to install. You should say “yes” to all these. If, for some reason, any patch
doesn't apply (the program may tell you the patch failed to apply), don't worry.

http://netfilter.samba.org

The patch already may be incorporated in the kernel source, but the patch logic
was unable to detect it. Just tell the script “no” the second time around. Do not
force the patch on. Although this is an option, it normally will result in the script
aborting. Once pending-patches completes, it will tell you the kernel is ready for
compilation. But we're not quite ready yet.

Patches applied or attempted on my system were ipt_LOG.patch (successful)
and tos-fix.patch (failed). The tos-fix.patch failed because a fix was applied, but
it did not correspond exactly to the patch in the patch-o-matic.

Once you have applied all pending patches to the kernel source, you're ready to
take a look at new patches that have not been incorporated into the kernel.

Some time back, Rusty Russell, lead Netfilter developer, introduced the “make
patch-o-matic target” to help folks incorporate new things in the kernel without
having to know how to use patch. This target works fairly well, but don't expect
it to work perfectly. Sometimes the patch logic is sufficiently old, and the kernel
source sufficiently changed, that a particular patch won't work. In recent
months, the patch-o-matic has grown quite a bit and some patches break
others. So Rusty incorporated yet another target, “most-of-pom”, to allow new
iptables builders to get access to as many of the patches as possible but reduce
the possibility of failure.

My recommendation to you is to run make most-of-pom, first saying “no” to
everything but noting those patches you're interested in. Then run make patch-

o-matic, noting any new patches not in most-of-pom that you might be
interested in. If no new patches interest you in patch-o-matic, stick to most-of-
pom. If any new patches do interest you that are only available in patch-o-
matic, take careful note of any other patches those new, interesting patches
might break. The worst offender as of this writing seems to be the drop-table
patch. We'll not look at that patch for this very reason. But if you need it, just
read and heed the warnings with that patch and others that tell you they will be
broken by it.

In some cases, such as with the H323-conntrack-nat patch, you will not be able
to apply a patch to the kernels we use in this article. If you can't do without this
particular patch, you probably won't be able to use the experimental make
targets for patching (patch-o-matic or most-of-pom). If this is you (I had this
need for one customer's system), you need to go to roeder.goe.net/~koepi. The
patch there includes newnat5, h323, talk, ftp and irc nat helpers. This is a
standard patch applied using the usual patch utility.

While running make KERNEL_DIR=$HOME/linux patch-o-matic, I selected the
following patches:

http://roeder.goe.net/~koepi

NETLINK.patch (successful)
NETMAP.patch (successful)
iplimit.patch (successful)
mport.patch (successful)
pkttype.patch (successful)
psd.patch (successful)
realm.patch (successful)
snmp-nat.patch (failed: already in kernel)
string.patch (successful)
tos-fix.patch (failed: already in kernel)
ulog.patch (failed: incompatible with kernel
 or previously applied patch)
LOG.patch.ipv6 (failed: already in kernel)
REJECT.patch.ipv6 (successful)

While going through pending-patches and the patch-o-matic, you'll want to
note a few things. The screen is divided by a line. Above the line is a welcome
note and a warning. Below the line is the information you should look at.

First, you will have one or more lines that will tell you which patches already
have been applied. You'll note as you go through patch-o-matic that it lists the
patches applied in pending-patches. In fact, because we're running patch-o-
matic, we don't need to run pending-patches; those patches also would have
been applied here. You only need to run pending-patches if you don't also run
most-of-pom or patch-o-matic, such as if you decided to use the newnat5/h323
patch mentioned above.

Below the already-applied lines comes a line:

Testing... Patchname.patch STATUS (comment)

The patchname.patch is the patch being tested. The STATUS will normally be
NOT APPLIED. The comment will be one of (x missing files) or (x reject of y
hunks). Missing files means the patch hasn't been applied (or the particular
corresponding files wouldn't be missing), or the patch doesn't match what's in
the kernel sources. In general, the reject means a patch has been applied, it just
doesn't match the patch in the patch-o-matic for whatever reason. The most
common reason is a small fix was made between the patch in patch-o-matic
and the patch in the kernel. When you see reject, it is a foregone conclusion
that patch won't apply. Not all patches will work. Note that the ulog.patch
failed. This failed either because it was incompatible with a previous patch or
with the (changed) kernel sources since the patch was originally created.

Third comes information about the patch, author, status of patch, what the
patch is, what it does, often an example to clarify how to use it and perhaps a
comment.

Finally, the question, do you want to apply this patch? The choices are No
(default), yes, test, force, quit and help as indicated by [N/y/t/f/q/?].

Once we've added the patches we want, we're done. Now the kernel is ready
for compilation. Or is it? Well, yes. However, we've added targets to the kernel. I
suggest you return to the kernel tree, run make oldconfig and select the new
Netfilter matches and targets we've incorporated (or what was the sense?).
Now you can continue to compile the kernel. After you install the kernel and
reboot into it, you're ready to put your new matches and targets to work.

Compiling and Installing iptables

While the kernel source is compiling, there's plenty of time to compile and
install iptables. Remember to supply the KERNEL_DIR= (if it's not in /usr/src/
linux) and the BINDIR=, LIBDIR= and MANDIR= arguments if you don't want
your new binaries and extensions installed in /usr/local/.

One small fix before we start compiling. For whatever reason, the NETLINK
extension does not compile. So if you chose the NETLINK.patch (as I did) you
need to make a minor adjustment. Just cd into the extensions directory and
open the Makefile using your favorite text editor. The first line is our shebang
line. The second line is blank. The third line starts off PF_EXT_SLIB: and contains
various extensions to be made and installed. Add NETLINK to the end of the
line and save the file back.

Now cd back up to the root of the iptables source tree and run your make and
make install, adding the arguments noted above if required.

Some Installation Closing Notes

Above, we used a modified patch process to patch the kernel. If you, like me,
grab kernel patches whenever they come out, you'll find that some will no
longer apply cleanly because the kernel sources have been modified. So when I
do want to try out a new kernel, I save the old .config file, wipe out the old
kernel sources and start fresh. You can do that or remember to save a tarball of
your kernel source tree before modifying it.

If you built a modular kernel previously using patch-o-matic (or pending-
patches or most-of-pom) and are only adding a few more modules, after you
use make oldconfig to add the new modules, you can do a make modules;

make modules_install and start using those modules.

If you want to see the information again that you saw while adding the patch-o-
matic patches, it's available in the iptables-x.x.x/patch-o-matic/ directory. The
files *.patch.help contain the information. In most cases, the examples in these
files are duplicated in the kernel configuration help.

The Wall—One Brick at a Time

Now that we have the modules we want compiled and installed, we're ready to
put them to work. But before we start, we need to decide exactly what we're
going to do. In order to do that we need to lay some groundwork. This
groundwork isn't so important when all we have is our home system and we
want to let everyone inside out but keep everyone outside out as well. Our
state table alone practically assures us that's what we'll have; add
masquerading or SNAT and we're done. This is what we had using the basic
scripts from the “Taming the Wild Netfilter” article (September 2001 LJ).

But firewalls in use at companies are rarely so simple. They demand that we
first understand (and maybe even restructure) our network topology. We also
need to understand exactly what it is we want our firewall to accomplish.
Sometimes, this is not much more than for our home system, but often it is
radically different. We can use the company's network security policy to assist
us (we do have an NSP, don't we?), plus some knowledge of what we want from
our network access. We won't discuss risk assessments here [see Mick Bauer's
“Practical Threat Analysis and Risk Management” in the January 2002 issue of
LJ], but their findings should be kept in mind to help guide us in the overall
scheme.

Topology, Shmopology—Where Do I Plug in My Laptop?

Many years ago we talked about our internet-connected hosts. They were all
directly connected to the Internet. No big deal, as all the system administrators
knew each other and things were friendly. Then everyone else discovered the
Internet, and we had to make some changes. As things mushroomed out of
control, we forgot or never knew who our neighbor system administrators
were. We found our systems under attack. So we left our public systems
directly connected but started hiding our users' hosts behind packet filters to
help protect them. The systems between our router and packet filter were said
to be on our DMZ, or demilitarized zone. The rest were on our trusted network
behind the packet filter.

Today, few companies would configure their systems this way. In our current
situation, usually only honeypots are deliberately left defenseless. Today, the
two most common configurations either have a firewall with two internal NICs
(one for the trusted network and one for the internal, public access network) or
two separate firewalls (the first allowing public traffic into a controlled, but not
trusted network and a second permitting entry into our inner sanctum or
trusted network).

While small companies may mix the trusted and controlled networks on one
private internal network, it is best to keep these separated whenever possible.

You also should control who has access to which area. Firewalls do a lot to keep
bad guys out, but do little to protect against bad guys already inside. In fact,
you may find it's prudent to put a firewall up between accounting and
marketing and engineering and production. None has much business in any of
the other's files.

Because this article is principally about iptables, I'll not cover more on network
topology. But we needed to understand the above to see how the
configurations below work. They really aren't too much different from the point
of view of the external firewall, only the internal one(s), if needed, will look a bit
more like the basic firewall I presented in the first article. That is, the internal
firewalls won't accept new traffic except from the trusted side. What goes out
also can be moderated to an extent, and we'll look at that a little bit also.

Running iptables on Nonfirewall Systems

There are times we might want to run iptables on a nonfirewall system. Despite
the advice you may have read (as noted in the last paragraph of the “Preparing
Your System for an iptables Upgrade” section above), there are times you'll
want to run iptables on simple hosts. The simplest, but most common example
would be a student system on a university network. In this case, you really
should trust no other system. So you'll probably want to accept only related,
established traffic.

Another example might be if you have decided to use an XDM server where
most users work, but your internet policy only permits certain employees rights
to surf the Web. How to deal with this? Well, fortunately, we can deal with this
fairly simply with rules like the following:

iptables -t filter -I OUTPUT -p tcp
--dport 80 -m owner --uid-owner 500 -j REJECT
iptables -t filter -I OUTPUT -p tcp
--dport 80 -j ACCEPT // only required if OUTPUT
 // policy is DROP/REJECT

or:

iptables -t filter -I OUTPUT -p tcp
--dport 80 -m owner --uid-owner 500 -j ACCEPT
iptables -t filter -I OUTPUT -p tcp
--dport 80 -j REJECT // only required if OUTPUT
 // policy is ACCEPT

Naturally, you'd need a list of either those permitted access or those denied.
Also, you wouldn't want to write individual rules. I suggest handling the rules
like this: for i in cat surfweb.txt, do

iptables -t filter -I OUTPUT -p tcp
--dport 80 -m owner --uid-owner $i -j REJECT
done

Just create a list of users to REJECT (or to ACCEPT and change the rule to match)
as the file surfweb.txt. Add user IDs to this list as needed. You might find the
above construct valuable for other repetitive rules as well. Note, however, this
only prevents them from surfing from the XDM server, not from their local
system.

So how might they be stopped from surfing from their local system? Well, the
firewall simply could drop or reject packets coming from the disallowed IP.
Easy, right? I mean, this is what packet filters are all about. But wait, we're using
DHCP and don't necessarily know in advance what the IP will be. Looks like
we've outsmarted ourselves—or have we? While we may not know the IP
address, one thing we can know is the MAC address. So we get a list of MAC
addresses from the systems (or via arp, or from the dhcpd.leases file). Then we
use a rule like the following:

iptables -t filter -I FORWARD -i eth0 -m mac
--mac-source <MAC> -j ACCEPT
iptables -t filter -A FORWARD -i eth0 -p tcp
--dport 80 -m state --state NEW -j DROP

This is best done in a loop like we did earlier, with the MAC addresses in one file
and then looping through them.

Note: to use the MAC address to permit or deny systems, remember that they
must be on your local network—that is, directly connected, via a hub, to the
firewall. If the systems in question are behind an internal firewall, and not
connected on the same LAN segment as the external firewall, you must put this
rule on the inner firewall.

My point here is crucial: you must know what the system with the rule on it can
know about packets it is to control. Only a system where packets originate can
know which user ID belongs to the process originating the packets. Only a
system on the local LAN segment can know the MAC address of an originating
system. After that, we have only the information available in the IP header.

Summary and a Look Ahead

This month we looked at Rusty's patch-o-matic, installing an updated kernel
and the user-land iptables utility. Probably the most important part is making
sure that if things go wrong you can recover. Meanwhile, Rusty has worked very
hard on ensuring you don't need to recover. After that we looked at a couple of
common network configurations. You'll need to remember these when you
dive into next month's Kernel Korner, which will be a part two of this article.
Finally, we took a quick look at how and where iptables might be used in
nonfirewall situations to control network resources.

Next month we'll look at managing services behind our NAT-ed firewall,
specifically how to make the most use of the IPs your ISP has assigned, and
how, with this configuration, to handle services like e-mail properly. We'll also
look at more matches, targets, tables and some common errors when building
rules.

David A. Bandel (david@pananix.com) is a Linux/UNIX consultant currently
living in the Republic of Panama. He is coauthor of Que Special Edition: Using
Caldera OpenLinux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Taking Advantage of Linux Capabilities

Michael Bacarella

Issue #97, May 2002

Concentrating on user privileges to appease the security paranoid.

A common topic of discussion nowadays is security, and for good reason.
Security is becoming more important as the world becomes further networked.
Like all good systems, Linux is evolving in order to address increasingly
important security concerns.

One aspect of security is user privileges. UNIX-style user privileges come in two
varieties, user and root. Regular users are absolutely powerless; they cannot
modify any processes or files but their own. Access to hardware and most
network specifications also are denied. Root, on the other hand, can do
anything from modifying all processes and files to having unrestricted network
and hardware access. In some cases root can even physically damage
hardware.

Sometimes a middle ground is desired. A utility needs special privileges to
perform its function, but unquestionable god-like root access is overkill. The
ping utility is setuid root simply so it can send and receive ICMP messages. The
danger lies in the fact that ping can be exploited before it has dropped its root
privileges, giving the attacker root access to your server.

Fortunately, such a middle ground now exists, and it's called POSIX capabilities.
Capabilities divide system access into logical groups that may be individually
granted to, or removed from, different processes. Capabilities allow system
administrators to fine-tune what a process is allowed to do, which may help
them significantly reduce security risks to their system. The best part is that
your system already supports it. If you're lucky, no patching should be
necessary.

A list of all the capabilities that your system is, well, capable of, is available in /
usr/include/linux/capability.h, starting with CAP_CHOWN. They're pretty self-

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

explanatory and well commented. Capability checks are sprinkled throughout
the kernel source, and grepping for them can make for some fun midnight
reading.

Each capability is nothing more than a bit in a bitmap. With 32 bits in a
capability set, and 28 sets currently defined, there are currently discussions as
to how to expand this number. Some purists believe that additional capabilities
would be too confusing, while others argue that there should be many more,
even a capability for each system call. Time and Linus will ultimately decide how
this exciting feature develops.

The Proc Interface

As of kernel 2.4.17, the file /proc/sys/kernel/cap-bound contains a single 32-bit
integer that defines the current global capability set. The global capability set
determines what every process on the system is allowed to do. If a capability is
stripped from the system, it is impossible for any process, even root processes,
to regain them.

For example, many crackers' rootkits (a set of tools that cover up their activities
and install backdoors into the system) will load kernel modules that hide illicit
processes and files from the system administrator. To counter this, the
administrator could simply remove the CAP_SYS_MODULE capability from the
system as the last step in the system startup process. This step would prevent
any kernel modules from being loaded or unloaded. Once a capability has been
removed, it cannot be re-added. The system must be restarted (which means
you might have to use the power button if you've removed the CAP_SYS_BOOT
capability) to regain the full-capability set.

Okay, I lied. There are two ways to add back a capability:

1. init can re-add capabilities, in theory; there's no actual implementation to
my knowledge. This is to facilitate capability-aware systems in the event
that init needs to change runlevels.

2. If a process is capable of CAP_SYS_RAWIO, it can modify kernel memory
through /dev/mem. Among other things, it can modify kernel memory to
grant itself whatever access it desires. Remove CAP_SYS_RAWIO, but be
careful: by removing CAP_SYS_RAWIO, programs such as X most likely will
fail to run.

Editing cap-bound by hand is kind of tedious. Fortunately for you, there's a
utility called lcap that provides a friendlier interface to cap-bound. Here's how
one would remove CAP_SYS_CHOWN:

lcap CAP_SYS_CHOWN

Once done, it becomes impossible to change a file's owner:
chown nobody test.txt
chown: changing ownership of `test.txt':
 Operation not permitted

Here's how you would remove all capabilities except CAP_SYS_BOOT,
CAP_SYS_KILL and CAP_SYS_NICE:

lcap -z CAP_SYS_BOOT CAP_SYS_KILL CAP_SYS_NICE

One thing to note: modifying cap-bound restricts the capabilities of future
processes only. Okay, not exactly future processes but any process that calls
exec(2) (see the function compute_creds in the kernel source file fs/exec.c).
Currently running processes keep the capabilities with which they started.

Modifying the capabilities of an existing process leads us into the next section,
and here's the catch I spoke about above. Running lcap with no arguments lists
what your system is capable of. If you see that CAP_SETPCAP is disabled, you
need to make a change to your kernel. It's simple enough to describe here. In
the kernel source tree, edit include/linux/capability.h. You're changing the lines:

#define CAP_INIT_EFF_SET
to_cap_t(~0 & ~CAP_TO_MASK(CAP_SETPCAP))
#define CAP_INIT_INH_SET to_cap_t(0)

so that they read:

#define CAP_INIT_EFF_SET to_cap_t(~0)
#define CAP_INIT_INH_SET to_cap_t(~0)

and then recompile.

There's actually a reason that CAP_SETPCAP is disabled by default: it's deemed
a security risk to leave it enabled on a production system (a patch exists for this
condition but has yet to be applied as of this writing). To be on the safe side,
make sure to remove this capability when you're done playing.

The System Call Interface

As of this writing, the syscalls capset and capget manipulate capabilities for a
process. There are no guarantees that this interface won't change. Portable
applications are encouraged to use libcap (www.kernel.org/pub/linux/libs/
security/linux-privs/kernel-2.4) instead.

The prototype for capset is

int capset(cap_user_header_t header,
const cap_user_data_t data);

HEADER is a fancy way to say which pid you're operating on:

http://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4
http://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.4

typedef struct __user_cap_header_struct {
 __u32 version;
 int pid;
} *cap_user_header_t;

If pid is -1, you will modify the capabilities of all currently running processes.
Less than -1 and you modify the process group equal to pid times -1. The
semantics are similar to those of kill(2).

The DATA argument allows you to choose which capability sets you plan to
modify. There are three:

typedef struct __user_cap_data_struct {
 __u32 effective;
 __u32 permitted;
 __u32 inheritable;
} *cap_user_data_t;

The permitted set contains all of the capabilities that a process is ultimately
capable of realizing.

The effective set is the capabilities a process has elected to utilize from its
permitted set. It's as if you had a huge arsenal of poetry (permitted set) but
chose only to arm yourself with Allen Ginsberg for the task at hand (effective
set).

The inheritable set defines which capabilities may be passed on to any
programs that replace the current process image via exec(2). Please note that
fork(2) does nothing special with capabilities. The child simply receives an exact
copy of all three capabilities sets.

Only capabilities in the permitted set can be added to the effective or
inheritable set. Capabilities cannot be added to the permitted set of a process
unless CAP_SETPCAP is set.

The Filesystem Interface

Sadly, capabilities still lack filesystem support, limiting their usefulness to a
degree. Someday, the mainstream kernels will allow you to enable capabilities
in a program's inode, obviating the setuid bit in many system utilities.

Once fully supported, permitting the ping utility to open raw sockets could be
as simple as:

chattr +CAP_NET_RAW /bin/ping

Unfortunately, more pressing kernel issues have delayed work in this area.

If you're so inclined, you can use libcap to hack your favorite services so that
they are capability-aware and drop the privileges they no longer need at
startup. Several patches exist for xntpd that do just this; some even provide
their modified version as an RPM. Try a Google search if you're interested in a
capability-aware version of some root-level process you find yourself often
shaking a fist at.

setpcap can be used to modify the capability set of an existing process. For
example, if the PID of a regular user's shell is 4235, here's how you can give that
user's shell the ability to send signals to any process:

setpcaps 'cap_kill=ep' 4235

An example use of this would be to allow a friend who is using your machine to
debug a CGI script to kill any Apache processes that get stuck in infinite loops.
You'd run it against their login shell once and forget about them.

Here's an example that utilizes execcap and sucap to run ping as the user
“nobody”, with only the CAP_NET_RAW capability. Our target of choice for ping
is www.yahoo.com:

execcap 'cap_net_raw=ep' /sbin/sucap nobody
nobody /bin/ping www.yahoo.com

This sample isn't terribly useful because you need to be root to execute it, but it
does illustrate what is possible. Despite some of these shortcomings, system
administrators still can take measures to increase the security of their system.
A system without CAP_SYS_BOOT, CAP_SYS_RAWIO and CAP_SYS_MODULE is
extremely difficult for an intruder to modify. They cannot hack kernel memory,
install new modules or restart the system so that it runs a backdoored kernel.

If your system logs are append-only and your core system utilities immutable
(see chattr(3) for details), removing the CAP_LINUX_IMMUTABLE capability will
make it virtually impossible for intruders to erase their tracks or install
compromised utilities. Traffic sniffers like tcpdump become unusable once
CAP_NET_RAW is removed. Remove CAP_SYS_PTRACE and you've turned off
program debugging. Such a hostile environment is a script kiddy's worst
nightmare, and there is no choice but to disconnect and wait for the intrusion
to be discovered.

Conclusion

Capabilities can provide sophisticated, fine-grained access control over all
aspects of a Linux system. At last, security paranoids will have some tools they
so desperately need in their endless fight against “them”.

http://www.yahoo.com

Resources

Michael Bacarella (mike@bacarella.com) is president of Netgraft Corporation, a
firm specializing in web system development and information security analysis.
He shares an apartment in New York with his wonderful fiancée and a most
fearsome green iguana (the iguana's name is Kang.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5737s1.html
mailto:mike@bacarella.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Debugging Kernel Modules with User Mode Linux

David Frascone

Issue #97, May 2002

Programming in kernel space has always been left to the gurus. Few people
have the courage, knowledge and patience to work in the realm of interrupts,
devices and the always painful kernel panic.

When you write programs in user space, the worst thing that can happen to
your program is a core dump. Your program did something very wrong, so the
operating system decided to give you all of its memory and state information
back to you in the form of a core file. Core files can then be used to debug your
program and fix the problem.

When you program in the kernel, there is no operating system to step in and
safely stop your code from running and tell you that you have a problem. The
Linux kernel is pretty nice to its own code. Sometimes it can survive a panic, if
you are doing something wrong that is relatively benign (these panics are
typically called oopses). But, there is nothing to stop your code from
overwriting or accessing memory locations from anywhere in the kernel's
address space. Also, if your module hangs, the kernel hangs (technically, your
current kernel thread hangs, but the result is usually the same).

These problems may sound benign to the naïve, but they are serious issues. If
the kernel panics, you rarely know exactly what caused the panic. The typical
solution is to put printks everywhere and hope that you stumble across the
problem before the messages are lost to the reboot. All of this is assuming that
you do not corrupt your filesystem. I have lost an entire filesystem before due
to a poorly timed panic (and due to the fact that a badly initialized pointer was
overwriting some of ext2's internal structures).

The first thing you learn when kernel programming is to keep all your code on
NFS. Files remain safe on another machine. But, that does not save you the
time of having e2fsck run every time you panic. Plus, you still can lose your
filesystem, even if your source code is safe on another machine.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

So, with all of these issues, it is not surprising how few have entered the realm
of kernel programming. Now, all that can change.

Virtual Machines and UML

Back in the mainframe days, when timesharing machines were the norm, the
idea of a virtual machine was born. A virtual machine is an encapsulated
computer completely at your disposal. A program on a virtual machine has no
real access to the physical hardware. All hardware access is controlled by the
machine or emulator.

VMware (www.vmware.com) has a very powerful virtual machine that allows
you to run any x86-based operating system under Windows NT, 2000, XP or
Linux. SoftPC (an 8086 emulator allowing you to run Windows and DOS
programs) has been available on Motorola 68k-based computers (i.e., the
Macintosh) since 1988.

True virtual machines are sometimes too expensive for the learner's budget.
(VMware Workstation for Linux costs $299 US from their web site.) Thankfully,
there is now a free alternative for those only wanting to run Linux: User-Mode
Linux (UML).

User-Mode Linux (user-mode-linux.sourceforge.net) is not a complete virtual
machine. It does not emulate different hardware or give you the ability to run
other operating systems. But, it does allow you to run a kernel in user space.
This gives you several benefits when it comes to development: the host
filesystem is safe from corruption, the virtual filesystem is undoable (which
makes it safe from corruption), you can run multiple machines on one machine
(this is useful for testing intermachine communication, i.e., network messages,
without having to use multiple machines) and it is very easy to run the kernel in
a debugger.

Setting up UML

Running UML is easy. You can download one of the binary packages (kernel
binaries, plus a couple of tools), or you can download the kernel patch. You also
need to download a filesystem. I'd recommend playing with the binaries first,
then building a custom kernel to suit your needs. The HOWTO covers all of
these topics and more.

One useful benefit of UML is Copy-on-Write files. These files allow you to
modify a virtual filesystem, without modifying the base filesystem. All writes or
modifications to a filesystem are stored in these files, typically ending with the
extension .cow.

http://www.vmware.com
http://user-mode-linux.sourceforge.net

So, when you are working, and you panic the filesystem, all you do is remove
the .cow file (which will be recreated), and your corrupted filesystem is restored
to its pristine version. (There are also tools to incorporate the changes in a
.cow file back into the original filesystem, if you want to keep your changes.)

Debugging Modules

Once you have UML up and running, it's time to play. I've written a very simple
kernel module for testing. It uses four devices, /dev/gentest[0-3]. The module
treats each device a little differently. Device 1 is a sink (just like /dev/null).
Device 2 stores a string for later retrieval. You can read the status of the
module from device 3, and device 0 could be any of the other three devices,
depending on how it is configured. (You can change the configuration with ioctl
calls.) The kernel module is available from www.frascone.com/kHacking/
gentest-0.1.tar.gz.

Debugging with printk

So, let's make a bug—a nasty one. Let's say when someone opens device 4 (cat

/dev/gentest4), the module hangs in a nasty loop: for(;;) i++; (see Listing 1).
Deadlocks or hangs are common errors when writing programs. They are
sometimes hard to find. Typically programmers just use printks to locate the
errors: printk("Got here!\n");. This type of debugging works, but you still hang
the system several times before you find the problem. With constant fscks, it
can get ugly. But, with UML, you just add in the printks and reboot to a fresh
filesystem every time to test it.

Listing 1. Test Bug

UML will help us find that bug with printks, but it is nothing that would have
caused us more than a few reboots. Now let's make our first really nasty bug.
Let's say that when someone reads from device 5 (i.e., cat /dev/gentest5); the
module starts to overwrite all memory: memset(0, 0, 0xffffffff); (see Listing 2).
Overwriting memory is a common error in C programs. In the kernel it is
especially nasty and can sometimes cause an instant reboot, keeping you from
seeing any printks that are generated. These bugs can still be isolated with
printk, but it is a very time-consuming process.

Listing 2. A Really Nasty Bug

Debugging with GDB

From what I've covered so far, UML is a great debugging tool. You can use it to
keep your filesystem safe when debugging modules. But there's something
more: GDB.

http://www.frascone.com/kHacking/gentest-0.1.tar.gz
http://www.frascone.com/kHacking/gentest-0.1.tar.gz
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749l2.html

As most experienced kernel programmers know, there is already a way to
debug a kernel using GDB and the serial line. But, in my experience, it really
doesn't work very well. The GDB shim in the kernel sometimes hangs, and you
need two machines to make it work. I have successfully debugged kernels
running in VMware on one machine by redirecting the virtual machine's serial
port to a file, but it was slow going, since the kernel portion of the GDB code
could still sometimes hang.

UML makes all that a thing of the past. With UML, you can run the entire virtual
machine under GDB, attach to a kernel while it's running, or even after a panic.
The easiest way to run UML under GDB is to add the command-line flag debug

to your runline. UML will then spawn GDB in an xterm for you and stop the
kernel. For most purposes, just type c to allow the kernel to continue booting
up (see Figure 1).

Figure 1. Running UML under GDB

To debug the module, you first have to load the module, then tell GDB where
the symbol file is, then set any breakpoints you need.

So, first things first, load the module. Included in the source code is a simple
shell script called loadModule that loads the module and creates the devices if
they do not already exist.

Once the module is loaded, press Ctrl-C inside the GDB window to pause the
kernel, and look at the module_list pointer. The last module loaded should be
at the head of the list. You can use a simple printf command to get the address
of the module. You'll need it when loading the symbol file (see Figure 2).

https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f2.large.jpg

Figure 2. Module List

Now, load the symbols file with the command add-symbol-file MODULE_PATH

ADDRESS. The filename used is the filename on the host system, not on the
virtual machine. After answering “y” to an “Are you sure you know what you're
doing?” question, the symbol file is loaded. You can check that it has been
loaded correctly by re-examining the module_list pointer again. Notice that now
the init and cleanup pointers have the appropriate function names associated
with their addresses (see Figure 3).

Figure 3. Loading the Symbol File

Now that the module is loaded, you can set any breakpoints you want. I'll set a
breakpoint at open and then try to cat one of the devices (see Figure 4).

https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f4.large.jpg

Figure 4. Setting Breakpoints

Now, let's run our two tests and see how hard the bugs are to find when using
GDB. On the first test, the system still hangs. But, now we can press Ctrl-C in
the debugger and see where it is hung.

In the hang test (see Figure 5) it is obvious that the current stopping point is
inside the for loop. If we really want to have fun, we can print out the value of i
to see what it contains.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f5.large.jpg

Figure 5. Hang Test

Now, the memory overwrite is a bit more difficult. Not because it is a panic, but
because I used memset. memset, in the GNU libc, ends up inserting inline
assembly into your code, so it looks like your bug is in string.h, instead of your
module. But, it still lets you know which function the error occurred in, and you
still know it is inside of a memset (see Figure 6).

https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f6.large.jpg

Figure 6. Memory Overwrite

Also, you still can examine any local variables in the current function (gRead) or
any global variables to help you find the problem.

Conclusion

While UML might not let you debug a device driver (since UML does not have
access to the physical hardware on the machine), it is an invaluable aid in
debugging kernel modules. It allows you to write and debug kernel modules as
easily as other C programs, without fear of panics, deadlocks and data loss. It is
a useful addition to any kernel hacker's toolbelt.

Resources

David Frascone (dave@frascone.com) currently works for the SunLabs division
of Sun Microsystems, Inc. His current project is a Diameter (AAA)
implementation. He is active in the IETF's AAA working group.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5749s1.html
mailto:dave@frascone.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Crystal Space: an Open-Source 3-D Graphics Engine

Howard Wen

Issue #97, May 2002

Howard provides an introduction to Cystal Space, and open-source alternative
to commercial 3-D graphics engines.

Want to make a 3-D graphics game or application? First, you will need a 3-D
graphics software engine on which to build it. Traditionally, your choices have
been limited to programming your own from scratch or paying a high licensing
fee to use another company's, which can restrict what you do with your final
product commercially.

However, a third alternative exists: Crystal Space, an open-source 3-D graphics
engine created by 31-year-old Belgian programmer, Jorrit Tyberghein.

An Indoor Environment Rendered with Crystal Space

Tyberghein created Crystal Space in 1997 after seeing games like Doom and
Quake and wondering how they were made. With no prior experience in
graphics coding, he researched the Internet on 3-D graphics programming and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

put together the first version of Crystal Space in two months. Tyberghein
released the code as open source, and the Crystal Space development
community soon was born. The graphics engine has since been ported from its
original Linux code to UNIX, Windows 32-bit and NT and other OSes.

Most of the software currently being made with Crystal Space are role-playing
games. The fact that the engine includes full control of one or more camera
perspectives and has built-in support for networking makes it easier to develop
multiplayer games, like role players. There are also flight simulators, real-time
strategy games and first-person shooters, similar to Doom or Quake, under
development using the engine.

A Test Application Showing Several Features of the Crystal Space

As for how Crystal Space compares to commercial 3-D graphics engines,
specifically those that power games like Quake III and Unreal Tournament,
presently it is comparable in terms of specific graphics features but not in
regard to code readiness and performance speed. But in general, Crystal Space
is much richer because it is not just a game-specific engine. It is also a general-
purpose graphics API, and it is being put to use to drive applications like a
multimedia internet browser, a sound-editing program and an image viewer.

Andrew Zabolotny, a 28-year-old programmer from St. Petersburg, Russia, who
has been contributing to Crystal Space's high-level coding says: “We have lots of
things Quake or Unreal will never need because a first-person shooter is a very
specific type of game that needs just a limited set of features.”

https://secure2.linuxjournal.com/ljarchive/LJ/097/5514f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5514f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5514f2.large.jpg

Crystal Space's Features: the Good and the Bad

Developers who have been working with Crystal Space cite the engine's stability
(it rarely crashes) and the completeness of its 3-D-rendering features as
reasons for using it and contributing to its development.

Yet how necessary is a 3-D graphics engine these days, considering the
advanced and powerful 3-D graphics chipsets that have become a standard
feature in most PCs? The simple answer is that even with the best 3-D
technology, you still need a software engine to manage what the hardware is
doing.

“There is always a limit to what hardware can do”, says Tyberghein, Crystal
Space's creator. “Even the best hardware cannot handle millions or more
polygons just by rendering them all. So an engine still has to do some
optimization to limit what is sent to the hardware.”

For example, a software engine like Crystal Space is needed to determine
quickly which parts of a game's virtual environment are visible to the user. This
helps to maximize the performance of the 3-D chipset by not wasting its
resources in making it render an object that will not actually appear on the
monitor, even if it is supposed to exist (though off-camera, away from the
user's point of view) within the virtual environment.

Example Environment Created with Crystal Space's Landscape

Crystal Space is free under LGPL. This 3-D game development kit written in C++
supports numerous graphics features and fancy effects: true six degrees of
freedom; colored lighting; mipmapping; portals; mirrors; alpha transparency;
reflective surfaces; frame-based and skeletal-animated 3-D sprites; procedural
textures; radiosity; particle systems; halos; volumetric fog; scripting using

Python or other languages; 8-bit, 16-bit and 32-bit display support; Direct3D,
OpenGL and software graphics rendering; font support; and hierarchical
transformations, to list only a few.

Although it cannot match graphics engines like Quake III's or Unreal
Tournament's in performance, Crystal Space has its own advantages over them:
for one, it is cross-platform, so you can write code that will run equally well on
Linux, UNIX, Windows 32-bit, Windows NT and seven other OSes to which the
engine has been ported.

Crystal Space has a flexible plugin system so that a single executable works
with various renderers like OpenGL, Direct3D and Glide. Since the first release
of the engine, the OpenGL renderer in particular has been rewritten and runs a
lot faster than in its previous incarnation.

A Starship Flying toward Earth in a Scene Rendered in Real Time

Also important is that Crystal Space can read many 3-D graphics file formats
automatically. There are several importers supporting various 3-D formats
(such as 3DS, OBJ, MDL, MD2, LWO and ASE). Inversely, the engine has a set of
Python scripts so that environments and models can be exported to Crystal
Space from within Blender.

Although the primary purpose of the engine is to produce 3-D graphics, it even
has a 2-D API to go along with its 3-D API. “I wrote a full-blown windowing GUI
based entirely on the Crystal Space low-level API”, says Zabolotny.

Pieces of separate code even can be used outside of Crystal Space in projects
unrelated to game or multimedia development. These include a csIniFile class
(for .ini file management), an SCF (shared class facility) subsystem, a csArchive
class (which deals with .zip files) and a VFS (virtual filesystem) subsystem.

The most significant weakness of Crystal Space is its lack of good collision
detection programming. Thomas Hieber, who has been developing Crystal
Shooter, a first-person shooter, with Crystal Space, has been spending most of
his time improving the engine's capabilities in this area. “There is some support
in it, but it is not very useful for games”, says the 30-year-old software engineer
from Germany. “There is only static testing of object-against-object that
basically will return information about where the collision occurs, if any. But
there is no good support for fast-moving objects.”

Another complicated issue is how Crystal Space handles lighting. It supports
colored static and dynamic lighting with soft shadows, but getting these to work
fast under all possible game processing circumstances is a challenge and one
which Crystal Space currently does not totally meet.

Snow Falling over a Shiny Floor Demonstrating Crystal Space's

The Future of Crystal Space

The Crystal Space community definitely needs programmers to contribute.
Tyberghein is looking for people who are skilled in programming graphic
engine internals and adept in algorithmic thinking—essentially those who can
help fine-tune the performance of the core engine itself. “I have lots of people
helping on the other parts of Crystal Space (i.e., OpenGL and Direct3D
programming, Windows and Linux porting) but very few people are capable of
helping me with the engine”, he says.

“If we had more good programmers, we could do much more”, Zabolotny says.
“We primarily need people skilled in cross-platform C/C++ programming.”

As of this writing, the primary goal for the Crystal Space team is achieving API-
stability. “Our development version is now rather stable, but there are still a few

things to do”, says Tyberghein. The current release of Crystal Space, 0.90,
serves as a predecessor to the long-awaited 1.0 release. The API between 0.90
and 1.0 should be nearly the same, but the release of 0.90 is meant to facilitate
bug hunting and documentation writing.

One of the enhancements in 0.90 being tested is a revamped landscape-
rendering engine that is more tightly and better integrated within Crystal
Space's code than it was in previous versions. There are several new special
effects that the graphics engine can draw, like hazes and lens flares, and there
is the addition of a particle-rendering system. On a technical level, Crystal
Space's tools have been made much more modular and simpler to access.
More plugins and code, which were previously available in separate libraries,
have been incorporated.

Ultimately, could Crystal Space ever evolve to the point where it has what it
takes for commercial game development and become as widely used as
proprietary 3-D graphics engines? Even Tyberghein expresses doubts:

If you license the Quake III engine, then you're sure to
get a quality product that will work. So if you want
technical support, you should not use a free engine.
However, if you feel like you can cope with the lack of
support, or if funding is a problem, then an open-
source engine is for you.

Stars Rendered with Crystal Space's Particle Animation System

Hieber concedes that “Crystal Space is miles away from Quake III”, but he does
not believe this will hinder anyone from making great games with Crystal
Space. It is, after all, well designed, though it doesn't necessarily have powerful
technologies, which affect the quality of games. “Look at Tomb Raider or Half-

Life”, he points out. “Neither has a really great 3-D engine, but they all have
been successful because of the value of their game play.”

Visit the Crystal Space site at crystal.sourceforge.net.

email: wen@airmail.net

Howard Wen has covered the video game industry for over ten years, writing
for several publications and web sites including Wired, Salon.com, Playboy.com,
GameSpot.com, O'Reilly Network and the Dallas Observer. He first started
reporting on the video game industry as a staff writer for VideoGames &
Computer Entertainment. He can be reached at his site, www.howardwen.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://crystal.sourceforge.net
mailto:wen@airmail.net
http://Salon.com
http://Playboy.com
http://GameSpot.com
http://www.howardwen.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Beowulf State of Mind

Glen Otero

Issue #97, May 2002

Where everyone meets OSCAR, becomes a Scyld administrator and builds a
cluster that rocks.

So you want to build a Linux cluster? Yeah, you and everybody else it seems
lately. However, the term Linux cluster is a popular one that doesn't mean the
same thing to everybody. When asked, many people would associate Linux
clusters with the high-availability, failover, redundancy and load-balancing
infrastructure of some e-commerce web site or application server—your typical
web farm. Others would associate Linux clusters with those parallel-processing,
computational juggernauts, also known as Beowulf clusters. They would all be
correct. If you think that's confusing, you should try to wrap your head around
the term bioinformatics. Right now, Linux clusters and bioinformatics are two
of the hottest technological trends, yet these terms couldn't be more vague. I
should know, they're my job—well, more of an adventure really. Yep, that's me,
Linux Prophet: clandestine cluster consultant, Beowulf Bad Boy, boon to
bioinformatics and alliterative arse.

But enough about me—and more about Beowulf. The brainchild of Donald
Becker and Thomas Sterling while working for a NASA contractor in 1994,
Beowulf has grown into the poster child for open-source, clustered computing.
The Beowulf concept is all about using standard vanilla boxes and open-source
software to cluster a group of computers together into a virtual
supercomputer. “What would you do with your own supercomputer?” you ask.
Heck, what can't you do? For example, you can rip MP3s or assemble the
human genome. These two applications take advantage of multiple processors
in slightly different ways. When ripping MP3s on a Beowulf, you are essentially
spreading all MP3 creation, typically an MP3 per CPU, over the cluster. In this
way you are parallelizing several serial jobs by starting them all at once, each
on a different CPU. Each MP3 job is an entity unto itself and doesn't need to
exchange information with any other MP3 job while running. So, theoretically,
one thousand MP3s (of equal size) can be completed by one thousand

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

processors (of equal speed) in the same time that one MP3 can be completed
by one processor. That's life in a perfect world. We won't really see linear speed
increase when launching 1,000 MP3 jobs due to network latency and
bandwidth overheads related to scaling up to 1,000 processors.

Most programs that run on Linux can be made to run on a Beowulf similar to
the MP3 example with minimal effort to achieve vastly increased throughput.
However, most experimental data sets, like those found in weather prediction
or DNA sequence comparison, cannot be broken up similar to MP3s because
the results from crunching one part of the data set affect the calculations on
other parts. The computing that needs to be done in these cases is analogous
to ripping one massive MP3 with multiple processors. You can imagine that if
the work required to rip one MP3 were divided among multiple processors, the
processors would need to communicate with each other to synchronize and
coordinate its completion. Programs of this type utilize message-passing
programming libraries so that results from one part of the program's
computations can be communicated and synchronized with other parts
running on different processors.

There are two common parallel-programming models: one utilizes a message-
passing interface (MPI) library and the other a PVM, which stands for parallel
virtual machine. Simple in theory but difficult to execute efficiently, parallel
programming is a complex endeavor. The intricacies of high-performance
computing are frustrating enough without having to work with the codes on
expensive, temperamental, custom mainframes. The difficult-to-use,
proprietary hardware typically associated with high-performance computing in
the past is going the way of the dinosaur as more and more people use COTS
(commodity-off-the-shelf) computer components and Linux to build Beowulf
clusters that provide unbeatable price/performance ratios and fun on open,
standardized platforms.

As cool as it sounds, practicing Beowulfery in the early days—like the rest of
high-performance computing—was anything but straightforward and more
akin to dabbling in witchcraft. Creating a Beowulf cluster required the
downloading and installation of additional software tools, utilities and
programming libraries to each Linux workstation in a typically heterogeneous
network. Each Beowulf was a unique clustered hardware and software universe
unto itself and was considered a work-in-progress. Cluster administration and
maintenance required carnal knowledge of both resident hardware and
software. The problems were many. But as with many open-source success
stories, a community was formed that forged ahead.

Since 1994, a great deal of community and commercial development has
resulted in significant advances in Beowulf computing and second-generation

Beowulf software distributions. That's right, distributions—on CDs. It's no
longer necessary to cobble together disparate tools, software and drivers
resident in far-flung corners of the Internet to build a Beowulf. Sound too good
to be true? Well read on, because I'm going to discuss the different Beowulf
software distributions, where to get them and how to get your own Beowulf
cluster up and running sooner than you can say schweeeeet.

Physically, every Beowulf has a few things in common that make it a Beowulf
and not just an ordinary network of workstations (NOW). Unlike a NOW, not
every Beowulf node is created equal—it's a class struggle. Each Beowulf has a
master, or head node, and multiple slave, or compute nodes.

Sporting a full-Linux installation, the master node is the command center of the
Beowulf and runs the communicative dæmons necessary to transform LOBOS
(lots of boxes on shelves) into a cohesive cluster. The master node is where the
brains of the outfit (yes, you) wield supreme executive power over the compute
nodes via installation and configuration of their software, the mounting of
filesystems, job monitoring, resource allocation and access to the outside
world.

The compute nodes, on the other hand, are there to do the master's
computational bidding and are on a need-to-know basis as far as the master is
concerned. Compute node intelligence can range from very dumb (containing
very little code) to relatively smart (possessing a full-Linux installation).
However, compute nodes having full-Linux installations still lack certain
capabilities, provided by the master node, that keep them subservient to the
master. For example, filesystems exported via NFS to the compute nodes (like
users' home directories) typically reside on the master node. As a matter of
fact, since all the Beowulf distributions we will cover embrace this approach by
default, the cluster we build in this article will mimic this approach for
simplicity's sake. But keep in mind that in reality, some I/O services can be
distributed throughout the cluster, and files can be read and written, to and
from, a variety of locations to accommodate data flow. But when starting out,
it's often easiest to equip the master node with all of the cluster services and
data needed by the compute nodes.

In a Beowulf, the master and slave nodes are networked together and
communicate over a private LAN isolated from ordinary network traffic. The
networking hardware is usually dictated by one's budget and ranges from
10Mbps Ethernet to very high-speed (greater than 1Gbps) proprietary
hardware like Myrinet. The least expensive networks are achieved using
Ethernet network cards, hubs and category 5 cable. And unless you want all
users to be physically located at the master node when using the cluster,
having your Beowulf command center connected to an outside network via a

second network interface is highly recommended. With this setup, the master
functions as a gateway straddling both the private Beowulf LAN and the public
network of your organization. Users can log in remotely to the master over the
public network in order to access the cluster's resources via the second
network interface but cannot sidestep the master node and access compute
nodes directly. Treating your Beowulf as a separate computational entity within
your organization as I've outlined here provides many performance,
administrative and security benefits. No wonder it's the design configuration
supported by the current Beowulf software. Take a look at the physical layout
of a typical Beowulf in Figure 1.

Figure 1. The Physical Layout of a Typical Beowulf

There are essentially two philosophies regarding the Beowulf operating system
environment. Let me emphasize that both are good, just different. The two
designs cater to different sorts of needs with regard to the cluster's purpose.
That is, among other things, the cluster's functional role, the kinds of users,
how many users, as well as the application(s) that will run on the cluster,
strongly determine how cluster software and access should be configured and
controlled. Not taking these things into consideration from the start will come
back to haunt you later, so let's cover the two cluster design philosophies.

In the original Beowulf configuration, each node possessed a full-Linux
installation, and user accounts were required on each node for an application
to run. This configuration incurred a lot of overhead on each node to run any
sort of application, and managing misbehaving processes was a rather
draconian matter. Since then, rolling out this type of cluster has improved quite
a bit. The use of DHCP, Red Hat's Kickstart, SSH, MPI, HTTP and MySQL have
really improved cluster installation and administration. But once logged in to
the master node, compute nodes still can be accessed by users and told to

think for themselves. Compute node access and control is a feature that may
be desirable for your particular cluster and its users, and thus represents an
important administrative decision. Two cluster distributions built on this model
are NPACI's Rocks and the Open Cluster Group's OSCAR (Open Source Cluster
and Application Resource).

Driven by the creator of Beowulf, a second cluster paradigm has evolved that
embraces a hive-mind approach to the master-compute nodes' relationship.
The master node is the queen bee and possesses a full set of chromosomes,
the ability to think for herself and control of the hive's actions. Having only a
half a set of chromosomes, the compute nodes are the hive's drones and are as
dumb as a bag of wet mice. The compute nodes cannot be logged in to
remotely and therefore simply do the master's bidding. Despite my cool
arthropod analogy, this configuration has been dubbed the single system
image (SSI), and its flagship is the Scyld Beowulf distribution. The SSI represents
the other extreme in compute node ideology and certainly has its advantages.

Which model is right for your purposes? Tough question, but it boils down to
what you want users to be able to do to the system as a whole. Making an
informed decision along these lines will require some tinkering around with the
different available default cluster configurations. So, let's start to get a feel for
the different clustering software by installing my homeboys' distribution, NPACI
Rocks. This small group at the San Diego Supercomputer Center has built a
rock-solid, easy-to-use Linux cluster distribution. All you need to build a cluster
that Rocks is a network of x86 boxes (IA32 or IA64) similar to that in Figure 1, an
internet connection, a CD burner, a CD and a floppy disk.

To begin, cruise over to the Rocks web site by pointing your browser at
rocks.npaci.edu. Here you will find a brief introduction to cluster building in
general and methods specific to the Rocks' Project madness. One thing that will
become apparent when perusing the web site is that the Rocks cluster
distribution was built with one goal in mind: to make building and
administering Beowulf clusters easy. To achieve this lofty goal, the Rocks group
1) based their distribution on Red Hat Linux, 2) added to Red Hat Linux all the
open-source software needed to use and administer a Beowulf cluster out of
the box, 3) packaged all the cluster software in RPM format, 4) used Red Hat's
Kickstart software to automate the master node and all compute node installs,
5) created a MySQL database on the master node to organize cluster
information and 6) provided some software to tie it all together. All great ideas.
As far as clustering software goes, the Rocks distribution includes PBS, Maui,
SSH, MPICH, PVM, certificate authority software, Myricom's general messaging
for Myrinet cards and much more. As if that weren't enough, they also designed
some features that allow you to customize and build your own Beowulf
distribution by adding your own software to Rocks. How cool is that?

http://rocks.npaci.edu

Once you're at the Rocks web site, clicking on the Getting Started link on the
left-hand side will link you to the stepwise instructions for building a Rocks
cluster. Step 0 briefly describes the basics of physical cluster assembly.
Hardware may vary, but the configuration should resemble that depicted in
Figure 1.

Step 1 consists of downloading the bootable ISO images from the Rocks FTP
site and burning your own CDs. NPACI Rocks is currently based on Red Hat
Linux 7.1, so there are two installation CDs, but you only need the first one to
build a Rocks cluster.

Step 2 consists of building the kickstart configuration file and installing the
master (front end in Rocks parlance) node. Thankfully, the Rocks group has
provided a CGI form on their web site that you can fill out to generate this file.
Clicking on the link “Build a configuration file” will take you to the form. The
form prompts you for the information it needs to generate a kickstart file that
will configure the internal and external interfaces of the front end, as well as
the administrative, timekeeping and naming services for your cluster. Plenty of
advice and default values are provided on the web page to help you fill out the
form.

Once you've filled out the form, click the Submit button. After clicking the
button, your browser should ask you to save the file. Save the file as ks.cfg, and
then copy the file to a DOS-formatted floppy. You now have the software
necessary to install a Beowulf cluster—the Rocks CDs and your front-end-
specific kickstart floppy. You're ready to Rock! Power on your front-end node-
to-be, make sure it is set to boot from the CD-ROM drive, insert CD1 and reset
the machine. At the “boot:” prompt, type frontend, insert the floppy and watch
the front end install itself. When installation is complete, the machine will eject
the CD and reboot itself. Remove the CD and floppy before the machine
reboots to avoid re-installation.

Log in to the front end as root. You will be prompted to create your SSH keys.
Once your keys have been generated, run insert-ethers from the command
line. This program eases Beowulf installation and administration by entering
compute node information it parses from compute node DHCP requests into
the Rocks MySQL database. Choose Compute from the program's menu, insert
CD1 into the first compute node, cycle the power on the node and the compute
node will install itself. When installation is complete, the machine will eject the
CD. Take the CD, place it into the next compute node and cycle the power.
Repeat this process for all the compute nodes.

That's all there is to it. Granted, there's a lot going on behind the scenes that
the Rocks guys have made transparent to you, but that was their intention. For

a better understanding of the Rocks nuts and bolts, check out the
documentation on their site. It's pretty good, and they're adding stuff all the
time.

You're now teed up to begin running applications on your Beowulf. For a short
tutorial on launching applications that use MPI and/or PBS, check out the
information on the Rocks web site under Step 4: Start Computing. One bit of
advice, the mpi-launch command is for starting MPI jobs that run over Myrinet,
while mpi-run is for running MPI jobs over Ethernet.

That's all for now. Keep your eyes peeled—before you know it, I'll be back with
another easy-to-install Beowulf distribution. And then another. And another.
And then we'll build a computational grid with them. And then—world
domination.

Resources

email: gotero@linuxprophet.com

Glen Otero has a PhD in Immunology and Microbiology and runs a consulting
company called Linux Prophet in San Diego, California.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5710s1.html
mailto:gotero@linuxprophet.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Interview with Ted Ts'o

Don Marti, Vernon

Issue #97, May 2002

Ted discusses his work on the Linux kernel, Linux International, Linux Standard
Base and other areas of the Open Source community.

Don Marti and Richard Vernon recently had the rare opportunity of taking
some time from Ted Ts'o's tight schedule to talk about his role with the Linux
kernel, IBM and the Linux community. Ted seems to be everywhere in the Linux
community—inside the kernel and out. He is currently a senior technical staff
member of the Linux Base Technology Team for IBM's Linux Technology
Center. He also chairs the Technical Board of Linux International, serves on the
Board of Directors for the Free Standards Group, is a member of the Internet
Engineering Task Force and serves on the Security Area Directorate of the IETF.
Previously, he worked at MIT in Information Systems, where he was the
development team leader for Kerberos. Through it all he's played a principal
role in the development of the Linux kernel.

LJ Many Linux enthusiasts know you for your work on the Linux kernel, but are
perhaps less familiar with your service to Linux International and the Free
Standards Group. Could you talk a little about your respective capacities with
those organizations?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Ted Well, I chair the Technical Board of Linux International. Linux International
is a vendor group that got started back in the good old days of Linux startups—
when Bob Young would personally show up at tradeshows and help hand out
CDs containing the Slackware distribution. So from the beginning, Linux
International had as a strong emphasis the concept that its members should
band together to help “grow the pie”.

The technical board was there to help make sure the organization stayed
connected to its technical roots and later picked up the responsibility to
examine applications to the Linux International Development Grant Fund,
which is still operating today.

Very recently, Linux International has begun considering a new program that
will focus on strengthening the various local Linux Users' Groups and working
with them to support people who are interested in doing various types of
“Linux Advocacy” (i.e., pushing Linux to be used in local public schools or in the
corporate infrastructure). This is an idea that I've been discussing with Jon
“maddog” Hall, and I think it's a great initiative. I hope it works out well.

As for the Free Standards Group, I currently serve on the Board of Directors for
the FSG. The FSG provides a legal and financial home for the Linux Standards
Base (LSB) and the Linux Internationalization (Li18nux) efforts. I was involved
with the LSB from almost the very beginning because I believe in providing a
stable environment so that members of the community can release binary
distributions of programs that will run on any Linux system of the same
architecture, regardless of the distribution that the user chose to use.

I was student systems programmer in MIT Project Athena during the height of
the UNIX wars and saw firsthand how incompatibilities between the various
UNIXes allowed Microsoft to dominate the desktop. So as a result, I've always
thought that the LSB is incredibly important for the Linux community.

LJ How do you feel about the recent progress of LSB (the release of LSB 1.1),
and what do you feel is the future for LSB—will it be something that evolves
into an ubiqitous standard? What might be some of the advantages of LSB for
developers who distribute software in source-code form?

Ted Progress on the LSB front has been slow but steady. LSB 1.1 isn't perfect,
but it's at the stage where it should be possible for both distributions and
independent software vendors to start implementing against it. We expect to
start seeing LSB-compliant distributions and application programs within a
year.

The LSB standard is working to make it possible for third-party application
programs to be installed and run across multiple distributions. Initially, the
majority of packages on a Linux system will still be provided by the distribution
and will not be LSB-compliant packages.

Hopefully, as the distributions start seeing the advantages of the LSB, and as
demand increases for more commonality between the various distributions,
the LSB will help encourage distributions to start converging gradually, as new
features are added. This will act to benefit all developers, even those who
distribute code in source form already.

ABI-compatibility, while most important to people or companies that distribute
sources in binary form, is also important to people who are using exclusively
open-source software. For example, some library maintainers don't bother to
change symbol names or even in some cases, library version numbers, when
they make incompatible library changes. This can cause all sorts of headaches if
two application programs installed on the same system need to reference
different libraries. An extreme example of ABI-instability can be found in libgal
(the GNOME Applications Library), which has had 19 different, incompatible ABI
changes in about as many months. Even if source is available, this kind of ABI-
instability is extremely inconvenient.

LJ What areas will FSG look at standardizing next?

Ted Well, there are two groups that have approached the FSG. One is
interested in standardizing some kind of high-level printing libraries interface.
Another group is interested in standardizing library interfaces for clusters. In
general, the FSG doesn't try to find new technologies to standardize; instead it
allows people who are interested in forming a workgroup to work on some
standard to do so. The FSG Board simply insists that the process is open and, to
the extent possible, that all interested parties are at the table while the
standard is being developed.

LJ Could you briefly describe your work at IBM?

Ted Well, I'm continuing to work on the kernel, especially the ext2/ext3
filesystem work. I've also been consulting with some of the other teams at the
Linux Technology Center, helping them with design issues and helping them
make their contributions be more easily accepted into the mainline Linux
kernel.

LJ What would you consider to be some of the most significant developments of
the 2.5 series kernel?

Ted It's early in the 2.5 development series, so it's really hard to say right now.
I'd say that scalability to larger machines and associated sub-goals, such as
reducing or removing the need for the global “big kernel lock” is certainly going
to be one of the more significant efforts in the 2.5 series. The introduction of
the O(1) scheduler is also quite significant. Work to continue improving the
virtual memory subsystem and the I/O subsystem also is ongoing and
ultimately very important. With the exception of a few new features, such as
better ACPI support and asynchronous I/O support, I suspect most of the
improvements in the 2.5 kernel will be performance-related.

That being said, as Linus has said—and I very much agree—a lot of the exciting
new work that is happening in the Linux community isn't necessarily happening
in the kernel, but in user land. For example, who would have thought that five
years ago, Linux would have not one, but two graphical desktop environment
systems under development?

LJ You are the author of /dev/random. How will the Linux kernel hackers
approach crypto-enabling technology in the kernel? Cautiously, or are the
developers jumping in with both feet now that US export restrictions are
looser?

Ted Well, Peter Anvin did some wonderful work laying the legal groundwork
(thanks must also go to Transmeta for paying the legal bills) so that
cryptographic software could be distributed from the kernel.org FTP
distribution network. There are certainly some people who are still a bit
cautious. That's understandable since many developers have lived behind the
Crypto Iron Curtain for so long that they're still afraid the US government might
change its mind and suddenly try to regulate cryptography again. At this point
though, my belief is that the crypto genie is so far out of the bottle that this sort
of nightmare scenario is very unlikely.

I think that it's only a matter of time before developers start adding more
cryptography into the kernel. On the other hand, there's a lot of cryptographic
solutions where the right place to put things really is outside of the kernel.

LJ With all the many demanding activities with which you are involved, how do
you stay organized and find sufficient time to devote to each activity?

Ted It's hard. One of the disappointing things about being involved with doing
more organizational tasks, such as serving on the board of the FSG and working
on the LSB, is that it means I have less time to do real kernel-level
programming. But, someone has to do it, and I happen to be somewhat good
at it, so....

That being said, I am hoping that I'll be adjusting my workload so that I will have
more of a chance to do some real programming than I have in the past year or
two.

One of the other ways that I try to find time is to pass off projects to other
people. For example, I was one of the original instigators of bringing Pluggable
Authentication Modules architecture to Linux. At the time, I was working at MIT,
and I visited Sun Microsystems to discuss some issues relating to Kerberos.
Near the close of the meeting, the Sun engineers introduced me to this thing
called PAM, and I immediately thought that this was a really great idea, and gee,
wouldn't it be great if Linux could have it too. So I started suggesting that this
would be a good thing to do, and next thing I knew, Andrew Morgan had
stepped forward and ran with it. The funny thing about this whole story is that
even though the engineers had been working on PAM for at least a year or two
before they introduced it to me, the Linux-PAM Project had an initial
implementation working, which was shipping in commercial distributions
before Sun was able to ship a version of Solaris that had PAM support. That's
what's so great about the open-source model.

LJ How is IBM contributing to the development of open-source software?

Ted Well, IBM started the Linux Technology Center with some 250 or so
engineers, spread out across some 16 cities and six countries, all working on
open-source software. And we have a mandate to try to get our changes
accepted into the mainline versions of the kernel or whatever open-source
project we might be working on. So we're trying very hard to work as members
of the Linux and OSS community. Of course, the sort of OSS enhancements we
choose to work on are also those that are important to IBM's customers, but
that's true at all Linux companies. The wonderful thing is that in most cases, the
interests of the global Linux community and the interests of IBM's and other
Linux companies' customers are the same.

LJ What pieces of the kernel are you working on right now?

Ted Right now, I've been mainly focused on the ext2/ext3 filesystem. I'd like to
work on reworking the tty layer, but there are only so many hours in a week.
Maybe in a month or two, I'll have some time to actually try tackling that.

LJ How long have you been interested in amateur radio and what got you
interested?

Ted I've had an amateur radio license since 1997. I got involved because I knew
a lot of people at MIT who were using the MIT UHF Repeater to communicate
and that sucked me in.

LJ What has been your role in developing Linux POSIX capabilities, and what is
your position on the current number of 28? Do you think this should be
maintained, or expanded?

Ted Like PAM, Linux POSIX capabilities is one of those things that I tried
pushing, but with less success. I still think that something like POSIX capabilities
is important, but I'm not so sure anymore that Posix capabilities is the right way
to go about solving the problem. Most system administrators have trouble
dealing with 12 bits of UNIX permission bits per file. Adding another 3 × 28 = 84
capability bits that must be configured correctly or the executable will either
stop working or be insecure, is a nightmare.

A simpler system where programs are still setuid root, but then permanently
drop all of the capabilities they won't need, is certainly a lot less flexible than
the full POSIX-capabilities model, but I think it is so much easier to administer
that this makes it far more important than other considerations.

LJ Have you tried SELinux? If so what do you think?

Ted No, I haven't had time to actively install and play with SELinux. I think it's
great that the NSA has been working on it, though.

LJ Do you see a conflict yet between optimizing Linux for throughput on mid-
range or large servers and going for small size and latency on embedded-class
systems?

Ted Well, I think it's a challenge to come up with algorithms that work well on
both mid-range and large servers, yet are also well adapted to typical desktop
machines. But, I think it's doable. In some cases, perhaps the end result won't
look like what has traditionally been done to support large-scale servers or
small embedded-class sytems. But that's what makes working on the Linux
kernel so neat! We're not always implementing things the traditional way, but
trying to find new ways of skinning the proverbial cat.

So no, I don't think there will necessarily be a conflict between optimizing Linux
both for large servers and small servers. I do believe that the primary tuning
target will continue to be the typical desktop machine, since that's what most
developers have and can afford. However, the typical desktop (as well as the
typical embedded system) has been gradually becoming more and more
powerful, and over time, the range of systems where Linux will have excellent
performance will continue to grow with each new major version of Linux.

LJ Besides the Rubini and Corbet book, how would you recommend that people
who want to contribute learn about the kernel, both for writing drivers for 2.4
and wild and woolly features for 2.5?

Ted The www.kernelnewbies.org site is definitely one of the best places to start.
Beyond that, the best way to learn about the kernel is to jump in and start
playing with it! Come on in! The water's fine!

LJ Anything you'd like to add?

Ted Only that I consider myself incredibly lucky. Ten years ago, Linux was just a
hobby; something that I did for fun. Now it's become a major force in the
computer industry, so I can work full-time on something that I once did just
because I loved doing it. That's neat. That's really neat.

email: dmarti@zgp.org

Don Marti is technical editor of Linux Journal, and Richard Vernon is editor in
chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.kernelnewbies.org
mailto:dmarti@zgp.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Databases and Zope

Reuven M. Lerner

Issue #97, May 2002

Reuven shows you how easy it is to turn a simple Zope site into one that reads
and writes data in a relational database.

Just about anyone who creates a serious web site will eventually want to
connect it to a relational database. Relational database systems might be 30-
year-old technology, but they're flexible, safe and fast. Using a database
ensures that we can store and retrieve data needed by our web application
without having to create our own persistent storage layer. This results in fewer
bugs, greater speed and far greater safety.

Zope, the object-oriented web application server that we have discussed over
the last few months, includes a built-in object database known as ZODB. ZODB
is both powerful and easy to use; everything in Zope, including DTML
documents and folders, is stored as an object in ZODB. The fact that ZODB
supports such database concepts as transactions means that you can use it to
store serious data, confident that no one else will be modifying information
during the execution of a long, complex query.

But in many cases, ZODB isn't a good match for the data we want to store and
retrieve. In many cases, this is because the data already exists, and we simply
want to use Zope to access it. Perhaps we're creating a new persistent storage
layer but want people to be able to access it from outside of Zope. Perhaps our
data is more suited for the relational database model than an object database.
And finally, perhaps our organization's IT department requires that all
information be stored in a relational database.

For all of these reasons and situations, the standard Zope installation defines a
ZSQL method object. This month, we'll take a look at ZSQL methods and at the
general integration of Zope with relational databases. As you'll see, it's very
easy to turn a simple Zope site into one that reads and writes data in a
relational database.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Database Connections

Before we can work with a database, we must first connect to it. In Zope, we
accomplish this by creating a database connection object. A Zope site can
contain any number of such objects, each of which is then available for sending
SQL queries to a database.

Zope comes with a single kind of database connection, which allows you to
work with the simple Gadfly relational database. But while Gadfly is good for
demonstrating Zope's database connectivity, it cannot match any other
relational database in terms of speed or functionality. I suggest skipping Gadfly
completely, installing a database adapter for the server to which you intend to
connect.

I have a running PostgreSQL server on my office database server, so I decided
to install the psycopg database adapter, one of several PostgreSQL adapters
currently available on the Internet. (See Resources for more information on
psycopg.) When installing these (and other) packages, remember that Zope
typically comes with its own copy of Python, which is independent of any other
copies that might be installed on your system. This means that you must install
psycopg into the Python library defined by Zope (using $ZOPE/bin/python)
rather than /usr/local/bin/python or /usr/bin/python.

Before we can install psycopg, we must first install the mxDateTime class
written and distributed by eGenix. This package makes it possible to work with
dates and times beyond the current UNIX limits (starting in 1970 and lasting
until 2038) and provides a number of convenience routines to work with dates
and times in various formats. Even if you don't use this module, you still will
need to install it in order to get psycopg to install correctly. You can download
mxDateTime from www.egenix.com/files/python/eGenix-mx-Extensions.html.

Note that you will want to download the “base” extensions package (which is
free), rather than the commercial extensions package. Even if you are using an
RPM-compatible distribution of Linux, you should not download the RPMs for
mxDateTime. This is because we need to compile and install the libraries into
our Zope Python tree, rather than the system Python tree.

After downloading and unpacking the mxBase package, you should be able to
install it by switching into the mxBase directory and typing

$ZOPE/bin/python setup.py install

This will compile and install the mx module into your Python installation.

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

Installing psycopg

We're almost ready to install psycopg, a combination of Python and C that
requires you to have the PostgreSQL development libraries installed. If you
install PostgreSQL using RPMs, then you will need the postgresql-devel RPM for
the appropriate version of PostgreSQL that you are running. This should install
files in /usr/local/pgsql and /usr/include/pgsql, although some installations use
postgresql instead of pgsql in both of these paths.

Now download the psycopg source code from initd.org/pub/software/psycopg.
I retrieved version 1.0.4, but new versions seem to arrive every few weeks, so
be sure to retrieve a recent version. In order to unpack and install psycopg, you
will need to make the makesetup shell script (installed into $ZOPE/lib/
python2.1/config in Zope 2.5b1, the latest version as of this writing) executable:

chmod 775 $ZOPE/lib/python2.1/config

To configure psycopg, change into its source directory and enter the following:

./configure
 --with-python=$ZOPE/bin/python
 --with-zope=$ZOPE
 --with-mxdatetime-includes=$ZOPE/lib/python2.1/
 site-packages/mx/DateTime/mxDateTime
 --with-postgres-includes=/usr/include/pgsql

You should obviously change the paths to reflect your installation, paying
particular attention to the Python version number (2.1, in my case) and the
PostgreSQL include directory.

While I remain convinced that there is a way to avoid doing so by passing
configure another option, it seems that you must now edit the Makefile by
hand to add a new header directory to the CFLAGS variable. Open the Makefile
in your favorite editor and modify the CFLAGS definition (line 90 in my version)
to include headers from $ZOPE/include/python2.1. Thus, if $ZOPE is /usr/local/
zope, you would add the following to CFLAGS:

-I/usr/local/zope/include/python2.1

Save the Makefile, and then install psycopg with

make && make install && make install-zope

This will compile and install psycopg for Python and Zope within your $ZOPE
directory.

Finally, move the psycopg shared library (psycopgmodule.so) from $ZOPE/lib/
python2.1/site-packages to $ZOPE/lib/python2.1/lib-dynload/.

http://initd.org/pub/software/psycopg

Configuring psycopg

You can test psycopg by restarting Zope and adding a new product in the root
directory. (Unfortunately, restarting Zope is the only way to tell the system that
a new product has been installed.) The product you want to install is called Z
Psycopg Database Connection in the “add product” menu in the upper right-
hand corner of the Zope management screen.

Each database connection object allows you to connect to a single database on
a single host, with a single user name and password. This means that if you
have divided your information across two different databases (or two different
database servers), you will need two connection objects.

When you choose Z Psycopg Database Connection from the “add product”
menu, you are then asked to provide some basic details about this database
connection. You must enter an ID (which must be unique within a folder) and a
title (which will appear in the management screen), as well as a database
connection string. This connection string tells Zope how to find and connect to
a PostgreSQL server. In my office, the atf database sits on the PostgreSQL
server on “databases”, and I can connect to it with the user “reuven” and no
password. Thus, I enter the following connection string:

host=databases dbname=atf user=reuven

You can leave the rest of the items in their default state if you wish. Click on the
Add button, and you will be returned to the folder in which you added the new
connection object.

Clicking on the connection object displays several Zope tabs that you can use to
administer the database connection. The four most interesting ones are:

• Status: this tab tells you whether the database connection is open (i.e.,
whether it is connected to your PostgreSQL server). It also allows you to
close the connection.

• Properties: you can modify the properties that you set when you initially
created the database connection object. This is particularly useful if the
database is moved to a different server or if you change the password
necessary to access it.

• Test: you can test the database connection by sending any SQL query to it.
Of course, the query must be valid; if you send illegal SQL or try to
address a table that does not exist, then you will get an appropriate error
from the PostgreSQL server. For example, you can enter SELECT * FROM

pg_database;. You can enter any SQL via this box, which can be
convenient for testing your database when you have no direct Telnet or
SSH connection. If you enter an INSERT or UPDATE query, Zope will

indicate that the query didn't return any results. As always, it's a good idea
to avoid using SELECT * except in trivial examples to avoid being surprised
by the order or name of columns in the result set.

• Browse: you can look through the tables in a PostgreSQL database with
the browse tab, which displays a Zope tree-style list of tables and fields.

ZSQL Methods

Now that we have a database connection, we can create one or more ZSQL
methods. Each ZSQL method is a single SQL query (with variable arguments, if
you want) that works with a connection.

Let's create a ZSQL method that lets us add a new name into an address book.
Of course, this means that we must first have an appropriate table defined in
our database. We can create the table by sending the content of Listing 1 to
PostgreSQL, either in the test tab for our database connection or by using the
traditional psql command-line interface.

Listing 1. Creating a Table

If you try to add a ZSQL method when no database connection is available,
Zope will display an error message, complaining that it could not find any
suitable database connection.

Zope's built-in system of “acquisition” means that a ZSQL method can use any
database connection above it in the Zope hierarchy. A user thus can choose a
different database connection for each method, making it possible to integrate
information from different databases in a single application—or to migrate
your web site from one brand of database to another.

To create a ZSQL method, go to the folder in which you created your database
connection and choose “ZSQL method” from the “add product” menu. You will
be asked to enter several items: an ID (which must uniquely identify your object
in this folder), a title (which will be visible in the management interface),
arguments (which we will discuss in the next section) and finally the SQL itself.
Your SQL query can be as simple or as complex as you like and can perform an
INSERT, UPDATE or DELETE.

Once you have added your ZSQL method to the system, clicking on it brings up
a number of Zope tabs. One of these tabs is labeled test, and (as you might
expect) it allows you to test the query. If your query has arguments, then you
are asked to enter them in an HTML form. If not, you are simply asked to click
on the Submit Query button. This returns, as with the test tab from our
database connection object, an HTML table describing the results of our query
—or a message indicating that our query returned no results.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5849l1.html

We can create a ZSQL method for each query we wish to perform. While this
might seem a bit odd, it's actually a very flexible and elegant solution that I've
grown to appreciate more and more. If I expect to perform 20 queries in a web
application, I can put each of them in a separate ZSQL method and then invoke
those methods from within DTML pages.

Within a DTML page, we can retrieve results from a ZSQL method by naming it
in a <dtml-in> tag. For example, I create a ZSQL method that implements the
following query:

 SELECT first_name, last_name, phone_number,
 fax_number, cell_number
 FROM AddressBook
 ORDER BY last_name, first_name

If I give this ZSQL the name “names-and-phone-numbers”, then I can invoke it
from within a DTML document with the code in Listing 2. In just a few lines of
DTML, we have successfully managed to produce a simple (but useful and
flexible) ZSQL method. But how does it work?

Listing 2. Invoking ZSQL from within a DTML Document

When Zope receives a request for this DTML document, it parses the DTML and
executes each of the tags contained within. The <dtml-in> loop construct
expects a sequence as an argument; in this particular case, the sequence is the
result from invoking the names-and-phone-numbers method. The <dtml-in>
tag also assigns one variable for each column in the returned result set. This is
how we can use the <dtml-var first_name> tag to print the user's first name;
Zope automatically assigns the value of the first_name column to a variable
called first_name.

In order to avoid printing unnecessary and blank lines, we use <dtml-if> to
check that we did not receive a NULL or empty value back from PostgreSQL.

ZSQL Arguments

It's obvious how we can use ZSQL methods and DTML to perform the same
query each time. But if we want to modify our basic query each time it is run,
we will need to define one or more arguments.

For example, if we want to retrieve information about someone based on their
last name (or a portion thereof, using SQL regular expressions), we will want to
define the following sort of ZSQL method:

 SELECT first_name, last_name, phone_number,
 fax_number, cell_number
 FROM AddressBook

https://secure2.linuxjournal.com/ljarchive/LJ/097/5849l2.html

 WHERE last_name LIKE
 ORDER BY last_name, first_name

In DTML, we can replace the XXXXXX with the <dtml-sqlvar> tag, which
automatically handles quoting for us. We must name the SQL variable that we
are using, as well as indicate its type:

 SELECT first_name, last_name, phone_number,
 fax_number, cell_number
 FROM AddressBook
 WHERE last_name LIKE <dtml-sqlvar name_sqlregexp
 type="string">
 ORDER BY last_name, first_name

In order for the above ZSQL method to work, we must name an argument
(name_sqlregexp) in the appropriate text box when creating our method. Zope
will take the value of that variable, place it inside of our query and retrieve the
results.

We can put even more of the burden on Zope if we use a <dtml-sqltest> tag,
which operates similarly to <dtml-sqlvar>:

 SELECT first_name, last_name, phone_number,
 fax_number, cell_number
 FROM AddressBook
 WHERE <dtml-sqltest name_sqlregexp op="like"
 type="string">
 ORDER BY last_name, first_name

If we have stored the above query in a ZSQL method named
select_by_last_name, then Zope can automatically produce skeleton DTML
documents that allow users to enter search terms and see results. To do this,
simply choose the “Z Search Interface” product from the “add product” list. You
will be able to choose from all of the searchable objects on the system,
including the ZSQL method that we just created (select_by_last_name). Choose
this, and give the report an ID (I used search_by_last_name). Also give a name
to the “input ID”, which is a fancy term for the HTML form that will be used to
send input to search_by_last_name. (I named it search_by_last_name_form.) In
modern versions of Zope, you also must indicate whether you want the system
to create DTML methods or page templates; we want the former.

Clicking on Add creates two new DTML methods in the current folder,
corresponding to the names that you entered in the form. Clicking on the “input
ID” URL will present a simple HTML form into which you can enter an SQL
regular expression. Clicking on the submit button will send your query to the
search_by_last_name DTML method, which will in turn invoke our ZSQL method
(select_by_last_name), which will then pass along our query to PostgreSQL.
PostgreSQL returns results to select_by_last_name, which returns a result set to
search_by_last_name, which then displays them in our web browser.

You can, of course, modify the DTML methods that are created to match the
style of your own site. You also can copy the DTML that Zope created
automatically into your own DTML pages, using them as examples of how to
create your own database queries.

Inserting

The only major task left is the implementation of an INPUT query, which adds
items into the database. Luckily, this is rather easy: we create a ZSQL method
that inserts a row into the database. Then we create a DTML document that
submits its HTML form elements to another DTML document. This second
document invokes <dtml-call> to our ZSQL method. Voilà--our record is
inserted into the database.

Listing 3 shows the ZSQL method that we need, which I named
insert_address_data. Now we'll create a simple DTML document, which will
contain an HTML form (see Listing 4).

Listing 3. The ZSQL Method insert_address_data

Listing 4. DTML Document Containing HTML Form

Finally, we create the DTML document insert_address that receives input from
insert_address_form and passes its arguments along to the ZSQL method
insert_address_data:

<dtml-var standard_html_header>
<h2><dtml-var title_or_id></h2>
<dtml-try>
 <dtml-call insert_address_data>
<dtml-except>
 <p>Sorry, but the INSERT didn't work.</p>
<dtml-else>
 <p>Successfully inserted!
</dtml-try>
<dtml-var standard_html_footer>

Users can now insert information into our PostgreSQL table using an HTML
form pointed at insert_address_form, and they can retrieve it using
search_by_last_name_form. It's rather impressive that we can do so much in so
few files—and even more so that we didn't have to touch a text editor once in
order to get this to work, but that it could all be done using nothing more than
our web browser.

Conclusion

While they are not perfect, I find ZSQL methods to be an elegant way to connect
a page of HTML with an underlying database. ZSQL is yet another way in which
Zope demonstrates its very flexible, elegant approach to web development—

https://secure2.linuxjournal.com/ljarchive/LJ/097/5849l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5849l4.html

albeit one that makes you scratch your head several times before it all becomes
clear and obvious. Someone who already knows DTML and SQL can easily
integrate a database into their Zope application—and with ZSQL methods, it's
possible to divide work on a site between those who know SQL (and work on
the ZSQL methods) and those who want to work on the DTML methods that
invoke them.

Resources

email: reuven@lerner.co.il

Reuven M. Lerner is a consultant specializing in web/database applications and
open-source software. His book, Core Perl, was published in January 2002 by
Prentice Hall. Reuven lives in Modi'in, Israel with his wife and daughter.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5849s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Getting to Know You...My Kernel

Marcel Gagné

Issue #97, May 2002

Marcel shows you different ways of looking at the Linux kernel from the
outside.

François, mon ami, are you still listening to that Vorbis broadcast of the Linux
kernel on Free Radio Linux? While I admire your determination to get to know
the Linux kernel intimately for this month's issue, the entire transmission will
take months. There are more interesting ways to get close to your kernel,
François, and you will not look so lost, mon ami. Besides, our guests will be
here soon and we must be ready.

Ah, bonjour, mes amis! It is so good to see you. Welcome to Chez Marcel, home
of fine Linux fare, great wine, good food and excellent company—your
company, mes amis. Please, sit and make yourselves comfortable. My faithful
waiter, François, will run to the cellar and bring back the wine. We have some
1999 Cornas Champelrose that will be an excellent wine for today's menu.

And speaking of the menu, I would like you to think of tonight's menu as a kind
of buffet or smorgasbord of little finger foods, small but very useful
applications with which you can pepper your desktop. Ah, François, you are
back. Wonderful. Please, pour for our guests.

Before you arrived, mes amis, I was telling François that getting to the heart of
the Linux kernel is sometimes best done by looking at it from the outside. After
all, your kernel is the heart and soul of your Linux system, not to mention the
engine that drives all other applications. One way to appreciate what your
system is doing is through the use of system monitors. Now, as you already
know, there are literally hundreds of such programs, so where do we start? In
my Linux kitchen, I run different desktops from time to time, most notably
Window Maker and KDE. I am particularly fond of KDE's power and beauty, but
Window Maker has a special place in my heart as well, specifically its elegant

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

dock applications. These small programs in 64 × 64 pixel squares come in every
variety, including a host of system and resource monitors.

For instance, check out Vito Caputo's WMSysMon (originally created by Dave
Clark) at www.gnugeneration.com/software/wmsysmon. This little monitor
provides visual feedback on memory use, swap use and percentage of I/O, as
well as interrupts and pages being swapped in and out. It's a lot to pack into
this small monitor, but seeing it in action (Figure 1) will give you an idea of what
to expect.

Figure 1. WMSysMon tells all!

Building this little application takes nothing more than extracting the source,
moving into the application directory (wmsysmon-0.7.6/src) and executing a
make followed by a make install.

To fire up this little monitor, simply run the command wmsysmon. You have the
option of running the interrupts display as a meter or with nice LED-style
blinking lights. Mes amis, I must tell you that what originally excited me about
computers all those years ago was the important-looking display of blinking
lights. Consequently, I run WMSysMon with the -l option.

You must admit, mes amis, that although WMSysMon looks very professional,
when we cook with Linux, we occasionally lean toward lighter fare, non? If
WMSysMon is too serious a monitor for you, consider BubbleMon-dockapp
available at timecop's web site, www.ne.jp/asahi/linux/timecop.

Mes amis, I am going to pretend that you will find this program useful and
immediately tell you how to build it:

tar -xzvf bubblemon-dockapp-1.4.tar.gz
cd bubblemon-dockapp-1.4
make
make install

To run the program, type bubblemon. Several people have worked on various
incarnations of a bubbling resource monitor applet, but the real genius here is
the inclusion of a cute little yellow duck swimming across the top of a bubbling
pond. The more your system is doing, the more bubbles rise to the surface. As
you start to run out of memory, the water level will rise until your duck
disappears from sight.

http://www.gnugeneration.com/software/wmsysmon
http://www.ne.jp/asahi/linux/timecop

Figure 2. No, the duck tells all.

Move your mouse over the BubbleMon-dockapp, and your duck and pond will
slowly fade to be replaced by a CPU usage graph complete with run average
stats for the last 5, 10 and 15 minutes. Here's another tip. If you right click on
the monitor while your duck is fading, you can capture an image in transition.
In other words, you can see a ghostly image of your duck swimming across
your CPU graph. It is possible to disable the swimming duck with the -d option,
but why would you want to do such a thing? Ah, levity.

Of course, your kernel is busy doing other things as well, dealing with users,
running processes, dealing with e-mail, web server requests and other internet
connections. WMiNet is a Window Maker application created by Dave Clark,
Antoine Nulle and Martijn Pieterse. Its purpose is to monitor (among other
things) various network connections, processes and users. WMiNet is available
at www.neotokyo.org/illusion.

Figure 3. WMiNet, keeping an eye on things.

After you have extracted the source using tar -xzvf wminet-2.0.3.tar.gz, change
to the wminet.app/wminet directory and do a make followed by a make install.
The install will create a configuration file in /etc/wminetrc, where you can define
what specific system processes the monitor watches. What I find particularly
interesting with this one is that each of the five display lines can be configured
for a single-click command. For instance, in position 1, I have a listing of active
processes. If I click that line, it automatically launches top. Here's a sample from
my own /etc/wminetrc file. I think you will find it is basically self-explanatory:

action1=rxvt -bg black -fg white -e top
action2=rxvt -bg black -fg white -e sh -c "w; read"
action3=rxvt -bg black -fg white -e sh
-c "netstat -etpn; read"
action4=rxvt -bg black -fg white -e tail
-f /usr/local/apache/var/logs/access_log
action5=rxvt -bg black -fg white -e sh -c "df -k;read"

When I have looked at these little Window Maker dock applications in the past, I
have mentioned that you can run them on other desktops as well. When
running them on something like KDE, however, there is the downside of all
those processes open in the taskbar and the frameless nature of the
applications themselves. They work just fine, but they lack the elegance of

http://www.neotokyo.org/illusion

Window Maker's dock that swallows the applications, thus making for a clean
collection of windows into your system's soul.

Thanks to Henning Burchart and the Kappdock, KDE users need no longer feel
left out. This little tool sits quietly in the corner, waiting for you to attach and
swallow all those Window Maker applications. Kappdock also places a little icon
in KDE's icon tray. One click banishes all the running applications from your
sight. One more click and they are back. I will show you how to work with it
momentarily, but for now start by visiting Henning's web site at
www.informatik.uni-oldenburg.de/~bigboss/kappdock.

Extract and build the source using the familiar extract, configure and make
method:

tar -xzvf kappdock-0.44.tar.gz
cd kappdock-0.44
./configure
make
make install

Start Kappdock in the background by running it from the shell or launch it by
pressing Alt-F2. You should see an innocuous little square on your screen with a
small striped bar across the top and a black arrow to the right of that bar.
(Notice as well the new icon in your KDE icon tray.) The bar actually is called the
drag bar (because you can use it to drag your applications to any position on
the desktop). I prefer to think of it as the dock itself. Clicking on the black arrow
will cause kappdock to disappear from your desktop. Clicking on the tray icon
will bring it back. So how do you attach applications? Please allow François to
refill your glasses and I shall demonstrate.

Begin by right clicking on the single square you see attached to the dock. You
can either select to edit the existing square or add a new one. If you right click
the drag bar, you will get the option of either adding a new app or changing
Kappdock's preferences. Some of these options include the position of the dock
and the orientation of docked applications. To add an application, click New.
You'll see a dialog box similar to the one in Figure 4.

http://www.informatik.uni-oldenburg.de/~bigboss/kappdock

Figure 4. Adding an Application to Kappdock

If you have an application already running (from the previous examples), you
simply can click on the Select button. Your mouse pointer will change to a set of
crosshairs. Move the crosshairs over to your running application, click and
voilà!, your application is docked. Optionally, you simply can type in the
information yourself. Have a look at Figure 5 for a well-stocked Kappdock.

Figure 5. Busy Kappdock keeps KDE looking clean.

There you have it, mes amis. The clock (in this case, wmCalClock), she is telling
us that closing time approaches once again. It is time to finish your wine and
perhaps try out one last program. If you just can't seem to get your fill of dock
applications, head on over to Ben Sinclair's Dock App Warehouse at
www.bensinclair.com/dockapp.

This is a well-thought-out web site with tons of Window Maker dock
applications. The graphical list of applications means that while you cannot
judge an application by its graphic, you certainly can let your imagination go
wild. There should be more than enough here to satisfy your appetite for quite
some time.

http://www.bensinclair.com/dockapp

On my own desktop, I run weather applications, clocks, graphical do-nothings,
power monitors, moon, sun and space weather monitors—all these in addition
to classic system resource monitors. The design of these little programs means
they take up very little of your precious desktop space. Thank you once again,
mes amis. Your visit to Chez Marcel is always a pleasure. Until next month. A
votre santé! Bon appétit!

Resources

Marcel Gagné (mggagne@salmar.com) is president of Salmar Consulting, Inc., a
systems integration and network consulting firm, and the author of Linux
System Administration: A User's Guide, published by Addison-Wesley.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5807s1.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Understanding IDS for Linux

Pedro Paulo Bueno

Issue #97, May 2002

Pedro discusses the different types of intrusion detection systems and shows
how to create signatures to identify attacks.

Do you feel your network is safe? Do you really know what is happening on
your network right now? Once upon a time, there were network administrators
who thought that the solution to their security was a simple firewall. In the past
few years, we have verified that this is not true anymore. The need for some
element that could alert and inform administrators about something strange in
near real time resulted in intrusion detection systems (IDSes). In this article we
discuss the types and models of IDSes: the host-based intrusion detection
system (HBIDS), the network intrusion detection system (NIDS) and the new
concept of hybrid-IDS. How to analyze the data generated and how to create
signatures (the patterns that identify the attacks) also are discussed, as well as
some examples of IDSes for Linux, like the open-source NIDS Snort.

What Is an IDS?

An IDS is a program that tries to detect strange packets and behaviors that may
compromise a network. The first IDS was the host-based IDS, but the one that
really got the market was the NIDS, the network-based. There is usually some
software or appliance, called a sensor or agent, that has one or two network
interfaces (as we will see later, it may work perfectly with one network
interface), which works in promiscuous mode. In other words, it will catch all
the packets that come to the interface and not just those with its particular
destination IP address. In this way, the IDS can analyze all the packets that
cross the network, check if they contain, for example, any suspicious strings
and then decide how to perform a reaction, such as interacting with the firewall
to create new rules to block the IP address, sending pager/e-mail alerts to the
security administrator and so on. One important topic about the NIDS is where
to deploy the sensor, inside or outside the firewall. I like to quote an interesting

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

passage about this from SANS' GIAC Director Stephen Northcutt's book,
Network Intrusion Detection: An Analyst's Handbook:

An IDS before the firewall is an Attack detection and
after the firewall is Intrusion detection....In a switched
network, since we don't have broadcasting, we have
two better options on deploying the NIDS, using a hub
to force a broadcast or using a mirroring-port in the
switch.

Where is the best place? We may have a long discussion about this since there
are defenders of both points, but undoubtedly all agree that the best option is
the use of sensors inside and outside the firewall.

IDS Models

To understand the IDS better, first we need to know how it works. Basically we
have two models of IDSes: the misuse or signature-based model and the
anomaly model.

The misuse or signature-based is the most-used IDS model. Signatures are
patterns that identify attacks by checking various options in the packet, like
source address, destination address, source and destination ports, flags,
payload and other options. The collection of these signatures composes a
knowledge base that is used by the IDS to compare all packet options that pass
by and check if they match a known pattern. Later we will discuss a Nimda
worm signature example in the Snort IDS.

The anomaly model tries to identify new attacks by analyzing strange behaviors
in the network. To make this possible, it first has to “learn” how the traffic in the
network works and later try to identify different patterns to then send some
kind of alert to the sensor or console. The disadvantage of this model is that
you will never know if your network has produced all types of behavior in the
IDS learning phase, so it may cause a high number of false-positive alerts.

False-positives are false alerts produced by the IDS to inform of an attack when
in fact it is just nonconfigured variables or an application that sent some packet
to a different port than usual, instead of a real backdoor, for example. To solve
this, the security administrator has to observe the alerts generated by the IDS
for some time and then fine-tune it.

Host-based intrusion detection systems usually are located in servers and only
detect events related to the machine in which it is installed. The main purpose
of the HBIDS is to avoid changes that may compromise the machine and detect
malicious queries. Examples of changes that can prove the importance of this

kind of IDS are web defacement and rootkits installed in the machine to attack
other machines.

Rootkits are packages installed in the compromised machine by the cracker,
which contain files used to open backdoors, erase log files to hide their
presence and replace binaries like ps and netstat, and also hide any dæmon or
open port.

Besides this, the HBIDS has the function of trying to detect attacks before they
happen, analyzing logs to point out strange behaviors and also detecting port
scans.

Tripwire

Tripwire is an example of an HBIDS for Linux [see Michael Rash's Paranoid
Penguin, LJ February 2002 for an open-source alternative to Tripwire]. It can be
identified as an HBIDS because it fills in for the lack of file-integrity detection
tools. With Tripwire, the user can define, in a configuration file, a set of files that
he or she wishes to protect against changes, and then Tripwire uses a
checksum of these files and attributes. In the case of any changes, it can send
alerts to the system administrator. The default configuration file provides a
good starting point, but the user also must customize it to reduce the chance of
false positives. Pay special attention to the log files. It doesn't make sense to
include the log files into the set of files that you select to be checked, since you
know that they will grow as soon as any event happens, such as a login.

Tripwire can be used together with the cron scheduler dæmon. In this mode,
users can automatize the process and define wherever they want to run it.

PortSentry

PortSentry [see also “PortSentry” by Anthony Cinelli on the LJ web site, /article/
4751] is part of the Abacus Project, from Psionic Software, whose goal is to
“produce a suite of tools to provide host-based security and intrusion detection
free to the internet community”. It is an important kind of HBIDS because it
detects packets addressed to the host and can be used with TCP Wrappers and
iptables. This type of detection is useful because a port scan is often a
precursor to an attack. PortSentry can detect TCP and UDP port scans, making
you aware of other hosts that run a service in the scanned port. The next step
is to verify for new patches or updates, or even configure it to create ACLs
(access control lists) to block future connections from the host scanner, using
TCP Wrappers. It also can create rules in the firewall, i.e., iptables, to drop
everything from the host scanner. The following is an example of PortSentry
alerts from Syslog:

https://secure2.linuxjournal.com/ljarchive/LJ/000/4751.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/4751.html

Dec 9 03:03:17 mobile portsentry[701]: attackalert:
 TCP SYN/Normal scan from host:
 200.185.61.132/200.185.61.132 to TCP port: 111
Dec 9 03:03:17 mobile portsentry[701]: attackalert:
 Host 200.185.61.132 has been blocked via wrappers
 with string: "ALL: 200.185.61.132"
Dec 9 03:03:18 mobile portsentry[701]: attackalert:
 Host 200.185.61.132 has been blocked via dropped
 route using command: "/sbin/iptables -I
 INPUT -s 200.185.61.132 -j DROP"

Swatch

Swatch is a log watcher that observes the logs and alerts the security
administrator about predefined strings found in the log file, i.e., /var/log/
messages. In the example below, I created a very simple Swatch configuration
file and chose to define the strings “snort” and “portsentry” and send the alert
to screen in different colors (and with a beep) every time that it finds these
strings:

watchfor /snort/
echo red
bell
watchfor /portsentry/
echo blue
bell

I also could ask Swatch to send an e-mail or execute a command when it finds
something. As the result of the previous Swatch config file, I received these
alerts:

Dec 9 03:22:53 flamengo snort[3268]: [1:1256:2]
 WEB-IIS CodeRed v2 root.exe access [Classification:
 Web Application Attack] [Priority: 1]:
 {TCP} 200.31.36.11:2153 -> 200.204.68.154:80
Dec 9 03:03:17 mobile portsentry[701]: attackalert:
 TCP SYN/Normal scan from host:
 200.185.61.132/200.185.61.132 to TCP port: 111

LIDS

LIDS stands for Linux intrusion detection system. It is a project that tries to give
Linux some extra security features deployed as kernel patches. In these
features we can include file and process protection and port-scan detection.
The first two deserve a little more explanation. File and process protection will
guard even against root superuser changes. This is very useful because when a
cracker exploits a bug in your system, such as a buffer overflow, that person
will have root access that permits him or her to do almost anything, such as
install rootkits, change logs, erase your HTML pages, etc. With these features
you can define ACLs to control files and include passwords to access/change
them, avoiding changes from unauthorized users, even root. The same is valid
for process because it will protect your system from altered binaries/dæmons.
Another good feature is that it offers a port-scan detector in kernel space.

NIDS

Network intrusion detection systems are the kind of IDSes responsible for
detecting attacks related to the network. One point of discordance is where it
should be deployed. You may encounter network topology where it is before a
firewall, and you may find it after a firewall. As I said before, there are good
arguments for both; it depends on your needs. In these examples I will use the
open-source Snort.

Snort

Snort was created by Marty Roesch and currently has over 1,000 rules used to
detect attacks like simple port scans and even new attacks such as the SSH
CRC32 exploit [see “Snort: Planning IDS for Your Enterprise” by Nalneesh Guar
on the LJ web site at /article/4668]. One of the greatest advantages of Snort is
its flexibility to create new rules on demand. Whereas with some IDS vendors
you have to wait until they release new packages, you may customize and
create signatures as soon as the attacks are exposed. One good example was
the wu-ftpd exploit in mid-December 2001. Just a few hours after the release of
the exploit, the Snort filter was released on security mailing lists. Snort also has
the capability to interact with firewalls, i.e., Check Point FireWall-1, using the
OPSEC feature or using other plugins to interact with Linux's iptables. Besides
the fact that Snort has a large signature database and is mainly based on the
misuse model, it offers a beta feature to introduce it to the anomaly model.
This feature, called SPADE, does a statistical analysis of the data it gathers and
tries to find out what the ordinary behavior is. As with many open-source
applications, Snort has a lot of additional applications that you may want to use
together.

One nice application from Silicon Defense is SnortSnarf, which creates HTML
reports based on the data gathered by Snort.

Snort also works perfectly well with just one network interface card (NIC).
Instead of other NIDSes, which need two NICs, one to gather the data and other
to be used by the administration interface, Snort can work with one NIC in the
promiscuous mode and also can be used to administrate it, inserting new rules
or upgrading it.

Hybrid-IDS

More recently, another concept of IDS is becoming popular. It is the hybrid
intrusion detection system. Marcus Ranum, founder of NFR (Network Flight
Recorder, Inc.), wrote that “The shim-type hybrid IDSes are an interesting blend
of the strengths and weakness of HBIDSes and NIDSes.” This means that it has
most of the features of the NIDS but on a per-host basis. This has a lot of

https://secure2.linuxjournal.com/ljarchive/LJ/000/4668.html

advantages, as it will try to detect attacks to the host exclusively, and the traffic
that it will analyze will be only packets with the host destination IP address. The
disadvantage of this kind of IDS is that it needs to be deployed in every host.

Prelude-IDS

Prelude is an example of a hybrid-IDS. It is divided into two different parts: the
sensor, called Prelude NID, that is responsible for the packet capture and
analysis, and the report server, used by the sensor to report an intrusion
attempt. Prelude has an interesting feature that deserves some comments: the
capability to read rules from Snort IDS. In other words, it has a complete rule
set ready to use. From its web site, it is also capable of reading rules from any
NIDS. Prelude was built with the cluster concept in mind. This explains the idea
of deploying information into a different machine called a report server, which
has the job of translating all the information received into a user-friendly
format, such as HTML.

Understanding and Creating Signatures

As we learned before, signatures are attack patterns. It's important to
understand how they work, so we can create them on-demand or when a new
exploit is discovered. In our examples, we will see how Snort handles its
signatures. In the second half of 2001 we observed new and powerful worms
on the Net, such as Code Red, Code Red II and Nimda. When these attacks
started to happen, Linux users (and I was one of them) felt very lucky because
the worms mainly were attached to Microsoft's IIS (Internet Information
Server). These worms had some particular patterns, for example, trying to
access the cmd.exe file through Microsoft's IIS. By knowing this, we easily could
create a Nimda Snort rule as mentioned in the section “IDS types and Models”:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
 (msg:"WEB-IIS cmd.exe access"; flags: A+;
 content:"cmd.exe"; nocase;
 classtype:web-application-attack; sid:1002; rev:2;)

Okay, but what does it mean? Snort rules are nothing more than sequential
parameters divided in two sections that we use to inform Snort of what we
want it to pay attention to. The first section is called rule header and includes
everything before the first brackets. The first parameter in this header tells
Snort what to do when the packet matches this rule—in this case, “alert”
indicates that Snort will generate an alarm and then log the packet. The second
parameter tells Snort what kind of protocol we want—in this case, just TCP. The
next five parameters indicate the source IP address and port, direction of the
packet, destination IP address and port. In this way, we know that a packet
from any address outside of our network, with any source port, going to an IP
address in our internal network at port 80 (usually web servers listen to this

port) will be checked by the internal parameters of the rule, called rule options.
The rule option section contains alert messages and information about which
parts will be checked in the packet, and then with the result of this inspection,
the appropriate action will be taken.

Rule options in our example:

• msg: “WEB-IIS cmd.exe access”—description of the alert.
• flags: A+—logical operator (+) to test all flags in the packet.
• content: “cmd.exe”—sets the specific content (cmd.exe) in the packet

payload.
• nocase—will match the specified string with case-insensitivity.
• classtype: web-application-attack—classification of the alert.
• sid:1002—Snort rule ID.
• rev:2—rule revision number.

In the Snort Users Manual you can find more than 30 rule options that you can
use to satisfy your needs. Too complicated? No, it is not! Let's try to create a
simple rule to alert any porn web access attempt from your network using the
few rule options above:

alert tcp $INTERNAL_NET any -> $EXTERNAL_NET 80
 (msg: "Web Porn Access Attempt"; content:"Free porn";
 nocase; flags:A+);

Analyzing the Data Generated

A port scan to a service like portmap (port 111), which is known to have various
exploits, would be alerted by PortSentry:

Dec 9 03:03:17 flamengo portsentry[701]: attackalert:
 TCP SYN/Normal scan from host:
 200.185.61.132/200.185.61.132 to TCP port: 111

Learning how to interpret log files is one of the most important things that an
intrusion or security analyst must learn in order to decide what action to take in
a given situation. The excerpt from the PortSentry alert above was obtained
from the syslog file. This alert states that on December 9 at 03:03, the host
called flamengo, which has PortSentry installed, detected an SYN-flag Normal
port scan in the TCP port 111 which, in general, runs the service portmap, from
host IP 200.185.61.132.

Conclusion

A firewall is a primary security element in a network, but it will not detect
attacks on a service that is already opened, such as an attack to your DNS or
web server. An IDS by itself will not solve all your problems as a security

element, but if you customize it for your needs, it certainly will help alert you to
strange behaviors and unauthorized attempts to your host or network. With
this information, you should contact the administrator of the network in which
the intrusion's IP is located and then inform them of what is going on. Being in
contact with the security community is also the best way to keep up to date on
new attacks and the signatures to detect them. Be aware—install an IDS!

Resources

email: pbueno@opencs.com.br or bueno@ieee.org

Pedro Bueno (bueno@ieee.org) is a former data engineer from Lucent
Technologies and currently is a security engineer at Open Communications
Security. He also contributes at Best Linux as a volunteer, and his favorite
hobby, besides soccer, is analyzing the alerts generated by Snort.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5616s1.html
mailto:pbueno@opencs.com.br
mailto:bueno@ieee.org
mailto:bueno@ieee.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Tippett Studio and Nothing Real's Shake

Robin Rowe

Issue #97, May 2002

Robin describes how Shake on Linux is used to composite special effects.

Video compositing software is used by motion picture studios to combine
special effects or animation elements into film sequences. Compositing
software may be thought of as doing for moving images what tools like the
GIMP and Photoshop do for still images. Nothing Real's Shake seems to be the
most widely used high-end compositing package today. Shake runs on Linux,
Windows and IRIX, and Apple has just confirmed rumors that it has acquired
Nothing Real and Shake.

Tippett Studio specializes in scary effects, such as bugs and creatures. Let's visit
Tippet Studio in Berkeley, California for a look at how they use Shake on Linux.

As a visual effects and animation studio for feature films, Tippett Studio has
won Academy Awards for visual effects work on Return of the Jedi and for
Jurassic Park and was nominated for effects in Starship Troopers, Dragonheart,
Willow, Dragonslayer and Hollow Man. Tippett Studio currently is creating
effects for the vampire movie sequel Blade II (release March, 2002). “We've
been using Shake on Linux since Evolution, about a year and half”, says
compositing supervisor Alan Boucek. “I'm running Shake on a dual Athlon.
What's exciting is that it is so fast. I can mostly work on my own machine,
without going to the renderfarm.”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Shake being used to composite a scene with Wesley Snipes in Blade II. Window manager is
MWM for continuity of look and feel with SGI IRIX workstations.

Boucek adds that his compositing crew was the first in the studio to move to
Linux. “Once we got Shake up and running, the next task was to get our pipeline
on Linux”, he says. “For most of our 3-D rendering, we use Pixar's RenderMan.
Grey renders are straight out of Maya, but animators run their stuff through a
simple Renderman pass for daily review.”

Shake uses a tree-graph interface to manipulate effects. Each input is passed
through nodes that represent filters or transforms that create the final
composite images. Complex effects take longer to render, and time is always at
a premium at a studio. Special effects artists often work at quarter resolution in
near real time with Shake on a workstation, then later batch process the effects
at full resolution on the server renderfarm.

Two years ago when Tippett needed new computers for compositing they
chose $5,000 US SGI x86 PCs over $24,000 US SGI Mips Octanes. “We bought
SGI PCs at first, but after those were discontinued we started building our own
machines from scratch”, Boucek says. “We've saved a lot of money on
machines, but a lot of that is taken up in providing our own support.” Besides
PC and SGI computers, they have many Macintoshes. And, some of the PCs are
running not Linux but Windows versions of Shake and 3-D modeling package
Maya. Boucek prefers Linux:

We can't tie NT into our renderfarm. When we go
home at night the Linux boxes keep working. The NT
workstations are dead—can't do double duty as
renderfarm servers. We still have a lot of SGIs. Our
Linux software conversion is just completing.

“Just being able to talk to who wrote the original code is a tremendous
advantage”, says Director of Technology Christian Rice.

With Linux we can have a personal dialogue with the
author of a package in a noncorporate manner. We've
overcome several hurdles in that manner. It does
create more responsibility for us though, and more
uncertainty. Just because a search of the Web turns up
nothing doesn't mean something can't be done.
Talking directly to the developer often gives us an
insight into special features that we wouldn't
otherwise be aware of, not to mention special features
being implemented to accommodate us.

“We have ten programmers here in a crew of 150”, says Boucek. “They work on
2-D, 3-D and pipeline support. A lot of what they do takes care of the handoff
[integration] between tools not especially intended to work together.” These
programmers support about 25 artists doing 2-D work, and about 75 doing 3-D.
Although Shake has many built-in effects, studios often create their own that
may become a look or specialty associated with that studio. As with the GIMP
and Photoshop, programmers may create plugins for Shake written in C or C++.

“Writing plugins for Shake at the beginning is very hard”, warns Software
Engineer Qin “Jean” Shen. “There isn't complete developer's documentation. I
would copy a simple example from the dev kit then send a lot of e-mail
questions to Nothing Real as I worked on extending it. They are good about
replying and helpful.” Shen explains that Nothing Real tries to write good
documentation, but because each plugin serves a special purpose it is hard to
be comprehensive. Plugin developers must take care to note when something
is needed in memory so that Shake can automatically fetch it. “Shake is a
scanline renderer”, notes Boucek. “It doesn't read the entire image in memory
at once. That's what makes Shake so fast.”

Shen disproves the theory that you can't get an exciting job in motion picture
software development right out of college. Although she already had an offer
from nearby ILM, she choose Tippett because as a smaller studio it offered her
more involvement. “When I started in 1999 we were still using Alias|Wavefront
Composer. I wrote plugins for that, and then Shake after we switched.” Shen
works on development of Flipper (a flipbook movie player) and GammaGal (a
tool to adjust monitors), both internal tools. “Flipper and GammaGuy had been
written using Motif and IrisGL. I rewrote those in OpenGL and FLTK, and
GammaGuy became GammaGal.”

Shake preview on left during split screen transition. Flipper flipbook player on right. Icons
(lower left) are for in-house plugins.

Flipper on left, GammaGal on right. Flow graph in Shake to build one entire movie shot
(scene).

“An important feature in Photoshop is gamma-level adjustment”, explains
Software Developer Darby Johnston. “GammaGal allows us to do something
similar very quickly on IRIX and Linux.” Because film has a greater dynamic
range than do video monitors, users constantly must play with levels to see
details in dark or light areas. Artists working in film play with gamma like an
artist will play with magnification while retouching a still image.

“To describe our Linux efforts converting our IRIX tools as porting is too strong
a word”, says Johnston. “For the most part, stuff just compiles.” Johnston's work
involves mostly traditional C-style coding, without threads or shared memory.

Johnston is part of a team writing glue code for integration, an image-
processing suite (e.g., blurs, crops, scales) and batch tools.

“There still are growing pains with Linux”, notes Boucek. “A lot of development
in Linux seems to be about beating Microsoft. But, what we need is a reliable
platform that runs our tools.” When Tippett started with Linux, the NVIDIA
drivers were still in beta and had problems. “Sometimes it wouldn't draw a line
in glLines correctly”, says Shen. “I used glStrip instead as a workaround. We had
many instances like that.” Boucek adds, “A lot of instability in the early months
with Linux was tracked down to the NVIDIA drivers, and Maya is still pretty
unstable for us on Linux using NVIDIA GeForce2 and Quadro2 graphics cards.”
Despite problems, NVIDIA drivers have been key in the transition to Linux.

“The performance of the proprietary NVIDIA drivers has been important in
spurring our move to Linux, although we can tell that the optimization effort is
toward Quake more than 2-D”, says Johnston.

We recently tested XiG with an ATI RADEON 7500 on a
1.4GHz Athlon and found it much faster for 2-D.
Flipping frames at 1,920 × 1,200, the NVIDIA drivers
barely hit 30fps, but the XiG drivers were over 40.
However, in 3-D the NVIDIA drivers were perceptibly
faster in Maya.

“We're trying hard to get Linux on everyone's desktop”, says Boucek. “But, we're
still not there because of stability problems with Maya on Linux.” Boucek wants
to see Linux and Linux drivers continue to get more stable and for performance
to improve.

Square is another movie studio that has done stunning work using Shake, on
the motion picture Final Fantasy. “We started with IRIX four years ago”, says
Visual Effects Supervisor James Rogers. “Our Linux renderfarm was brought up
in the middle of production.” Square used their existing IRIX boxes for
workstations, then sent data through a custom render manager to Shake batch
render on the Linux renderfarm. “We started testing Linux workstations at the
end”, says Rogers. Square recently announced it will cease movie operations
and close its offices in Hawaii as of March 29, 2002.

To install Shake we download three files (55MB) from the Nothing Real web
site: the license manager (lmutil.Z, 184k), the application (shake-linux-
v2.46.0116.tar.bz2, 28MB) and the tutorial (shake-tutorial-v2.46.0116.tar.gz,
26MB):

gunzip lmutil.Z
tar xvfj shake-linux-v2.46.0116.tar.bz2
tar tvfz z/shake-tutorial-v2.46.0116.tar.gz
tar xvfz z/shake-tutorial-v2.46.0116.tar.gz
./lmutil lmhostid

Just to double-check, we used the tell switch with tar to see what it would do
before doing an extract.

The lmutil program echoes a 12-digit license-manager host ID. This host-locked
ID code must be sent to Nothing Real in order to receive a two-week trial key
code (key.dat). Copy the e-mailed key to the specified directory, start X and run
Shake:

cp key.dat shake-v2.46.0116/keys/
startx
shake-v2.46.0116/bin/shake

Unless you already know Shake, two weeks isn't much time to learn about this
complex tool.

As this story is being written, the future of Shake is unclear. Apple confirmed
rumors of the Nothing Real acquisition in a short statement released on
February 6, 2002. Tippett Studio's Boucek notes:

They have a core renderer that's faster than
anybody's. That could be valuable in QuickTime or
Final Cut Pro. Shake is such an important tool for us on
Linux we have to be concerned about what would
happen if it becomes OS X only. But, it would be good
if it was cheaper so we could afford more seats. In
general, we're excited about OS X. We have a lot of
Macs here.

With BSD-based OS X, the Apple platform gained NFS and other UNIX features
that help it integrate into movie studio pipelines.

Apple, in a two-sentence statement confirming rumors that it had purchased
the company, only revealed that it “plans to use Nothing Real's technology in
future versions of its products”. In 2001, Nothing Real had announced that it
would port Shake, which runs on Linux, Windows and IRIX, to Apple OS X.
However, Apple is uncommitted as to whether it will release that promised OS
X version of Shake.

Since Apple has never continued development of a GUI application for another
OS after an acquisition, it seems this may be the last version of Shake for Linux
workstations. However, the Shake renderfarm server software will probably
continue to support Linux indefinitely. There's a precedent with the Apple Linux
Darwin QuickTime server software. If future versions of the Shake GUI only run
on Macintoshes, the extra hardware cost for new Macs seems a nonstarter to

studios. But, Apple could sidestep that by lowering the cost of Shake. At nearly
$10,000 US per seat, Apple could throw in a loaded $2,000 US iMac for free.

Some studio managers are feeling spooked by Apple's total silence on their
plans for Shake. But others, such as Boucek at Tippett Studio, express optimism
that Apple has something to offer to the professional motion picture editing
market.

Because that's been most of the market, Linux companies are more focused on
servers than workstations. Despite not really being designed for that, Red Hat is
the de facto standard for Linux workstations. Some users say server-oriented
Red Hat is not a good distro for the desktop. Red Hat CEO Robert Young admits
being booed more than once for telling Linux crowds, “Linux will never be
successful on the desktop.” Competition from Apple OS X may spur Linux to
become more user-friendly. Thanks to OS X, Apple system Software Product
Manager Ernest Prabhakar was able to announce at USENIX BSDCON in
February 2002 that BSD is now three times more popular than Linux on the
desktop.

Apple may shake up the motion picture effects business. Steve Jobs is the CEO
of both Apple and Pixar. Or, up-and-coming competitor Silicon Grail's RAYZ
could be a big winner as a result of the Apple's Nothing Real acquisition. Many
studios are taking a hard look at RAYZ due to the uncertainty surrounding
Apple's plans for Shake. We'll take a look at RAYZ on Linux in detail here next
month.

Resources

Cat Sequence

email: Robin.Rowe@MovieEditor.com

Robin Rowe (robin.rowe@movieeditor.com) is a partner in MovieEditor.com, a
technology company that creates internet and broadcast video applications. He
has written for Dr. Dobb's Journal, the C++ Report, the C/C++ Users Journal and
Data Based Advisor.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/097/5851s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/5851s2.html
mailto:Robin.Rowe@MovieEditor.com
mailto:robin.rowe@movieeditor.com
http://MovieEditor.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Pessimism or Realism?

David A. Bandel

Issue #97, May 2002

This month David considers antitrust legislation and the possibly bleak future
of Linux.

Well, those of you who thought the days of the robber barons were over
haven't been paying attention—looks like Microsoft has gone from the software
industry into politics. They steamrolled and bullied, and when that didn't work
they bought out their competition. And they just found out it works like a
charm in political circles too, increasing their $150,000/year in political
contributions to over $6.1 million (and buying a lot of influence with that
money). I hate to say it folks, but hundreds of millions of our tax dollars have
been wasted in antitrust legislation just to subsidize even stronger Microsoft
control of the software industry.

But Microsoft leaves no stone unturned. They “give away” software to schools.
The price tag is if you want Microsoft for free, you can't run/teach any other
operating systems—looks like our children will be saying the pledge of
allegiance to Microsoft. And it's not just happening in the US, it's happening
everywhere Microsoft sticks its foot in the door. I am certain these deals have
been struck with Canadian schools, Australian schools, even South African
schools. Microsoft is bound and determined that in five years or less, the only
operating system in the world will be theirs. After the incredibly expensive and
embarrassing fiasco called an antitrust trial, their stranglehold on the industry
will be stronger in the coming years than anyone's nightmares imagined. Our
children will learn Microsoft programs and operating systems exclusively. OEMs
will revert to offering only Microsoft because that's all folks will order. Because
when you get one order for a Linux system and over 10,000 orders for
Microsoft, it doesn't pay to preload anything else (and unless a court orders
OEMs to offer systems with no OS, they will come preloaded).

I also foresee many more useless lawsuits. So I declare the winners of the US
antitrust case against Microsoft to be first, the lawyers and second, Microsoft.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The losers are everyone else (unless you happen to be a Microsoft stockholder).
In another ten years Linux will be just another memory. Pessimistic? No,
realistic. Our courts and elected officials have failed in their duties. And until yet
another antitrust lawsuit is won against Microsoft (it will be the third time),
things will only get worse. But perhaps the third time (if it ever happens) will be
the charm, and innovation and freedom of choice can return to the software
industry. I'm not holding my breath. Good guys too often finish last.

Axel www.lintux.cx/axel.html

This utility claims to be a download accelerator. I don't want to get into the
debate about accelerating downloads, but the program can run single or
multithreaded (opening X number of connections to a server). Whether the
downloads are faster or not, and in which mode, is for you to decide. What I
know is that this utility is very small compared to some others. Requires:
libpthread, glibc.

axelq electron.its.tudelft.nl/~hemmin98/axelq.html

The Axel utility mentioned above has no queue to permit you to store URLs for
later download. This adjunct allows you to do that and run Axel at a later date
against a list of URLs. If you want to run Axel, then you'll also want this utility.
Requires: /bin/sh.

integrit integrit.sourceforge.net

This particular application compares itself to the likes of Tripwire and AIDE. As
another tool in monitoring your system, it works well enough. It is simple to use
and can be set up to check your system against changes to key files or
directories. Requires: (integrit is built statically, so requires no runtime libs).

nmbscan gbarbier.free.fr/prj/dev/#nmbscan

If your network has a mix of Windows and Linux/UNIX, you can use this to take
a quick look at the local network. It is a simple shell script that makes use of the
network tools on your system to identify Windows hosts, Samba servers and
provide as much information as possible regarding the Windows side of your
network. Requires: /bin/sh, smbclient, nmblookup, arp, host, ping.

myPhile www.rni.net/~geoffm

This is an extremely simple, yet versatile front end to just about any MySQL
database to which you care to connect. Newly installed, it creates a small
database address book. It is easily modified for your own purposes and is
usable by a small company with few changes and almost no training. It's worth

http://www.lintux.cx/axel.html
http://electron.its.tudelft.nl/~hemmin98/axelq.html
http://integrit.sourceforge.net
http://gbarbier.free.fr/prj/dev/#nmbscan
http://www.rni.net/~geoffm

a look if you need a quick and simple address book for the masses. Requires:
web server with PHP, web browser.

Jmol www.openscience.org/jmol

If you're a college student with chemistry courses that require you to model
molecules, this program is great. I remember having to do such modeling (not a
few years ago) with a tinker-toy set that looked like jacks with plastic straws. But
this program will let you do everything short of touch the model. It comes with
many samples, or you can look for the compound you need on the Web. This
program supports a lot of different format files for chemical compounds.
Requires: Java.

GRPN lashwhip.com/grpn.html

This month's choice from three years ago was frustrating. Keystone was sold to
WhitePajamas and abandoned, and most other choices showed little, if any,
improvements. While not a favorite of mine from the past, as some others have
been, I choose GRPN. Probably not a lot of us remember Reverse Polish
Notation (RPN) anymore, but it was used in many calculators, and if I remember
correctly, almost all scientific calculators. If you like RPN, then this calculator is
for you. It handles general math functions, exponential and logarithmic
functions, and trigonometric functions. Requires: libgtk, libgdk, libmodule,
libglib, libdl, libXext, libX11, libm, glibc. Until next month.

David A. Bandel (david@pananix.com) is a Linux/UNIX consultant currently
living in the Republic of Panama. He is coauthor of Que Special Edition: Using
Caldera OpenLinux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.openscience.org/jmol
http://lashwhip.com/grpn.html
mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Embedded Linux Targets Telecom Infrastructure

Rick Lehrbaum

Issue #97, May 2002

Reach out and...Tux someone! Rick reveals the many ways Linux is entering the
telecom market.

The 22-member nonprofit Open Source Development Lab (OSDL) used the
occasion of LinuxWorld 2002 in New York to announce a major new Linux
initiative aimed at the telecommunications infrastructure market. OSDL has
created the Carrier Grade Linux working group that is chartered to provide
“vision and guidance” and to “encourage the development of whatever
commercial and open-standard components are needed on top of Linux to
implement required platform functionality” for the telecommunications
industry. The Carrier Grade Linux working group is made up of some heavy
hitters in the telecom market, including Alcatel, Cisco, HP, IBM, Intel and Nokia.
Linux vendors MontaVista Software, Red Hat and SuSE are also members of the
working group.

OSDL has articulated several reasons why the telecommunications industry
needs a new standards-based, carrier-grade operating system platform, and
why Linux is ideal to serve as its basis:

• Networks are converging for multimedia communication services.
• More bandwidth and new architectures are needed.
• Open-standards-based, off-the-shelf software components are needed to

improve time-to-market of new services.
• An open-standards-based approach reduces development cost/risk of

products for the new architectures.
• Linux is the fastest-growing, general-purpose server operating system.
• Fragmentation of the Linux kernel must be avoided for both data center

and communications market segments.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The group's initial focus is to collect market requirements and specify the
architecture for a Carrier Grade Linux platform (see Figure 1) and also to
encourage development of third-party components on top of Linux that
implement the required functionality of the platform.

Figure 1. Carrier Grade Linux Architecture. Copyright (c) 2002, OSDL. Used with permission.

Other indications of the march of Linux into the telecom market are seen in the
following recent headlines:

• HP: “Linux Is the OS of the Future in Telecom”: Also this year at
LinuxWorld in New York, HP unveiled a range of new Linux-based
products and services targeting the internet infrastructure,
telecommunications and network equipment provider markets. They
include a family of Linux-based, carrier-grade servers and a developer's kit
for HP Opencall software. The new telecom-oriented server family will be
powered by Carrier Grade Linux, when available. According to Mark
Butler, HP operations manager for telecom systems operations, HP is
strongly supporting Linux as the OS of choice for the telecom market.
“Linux is the operating system of the future in the telecom sector”, Butler
said. “HP is leading the advance of Linux in the telecom market.”

• Motorola Targets “6NINES” with New HA Linux Platform: Motorola
Computer Group also is promoting Linux into telecom infrastructure. They
recently announced the latest version of their telecom-market Linux
platform, HA Linux 3.0, which Motorola claims implements “significant
steps toward providing the key operating system features required for
6NINES-availability, or the equivalent of 30 seconds or less of downtime
annually”. Motorola says to achieve that level of uptime, you need

https://secure2.linuxjournal.com/ljarchive/LJ/097/5850f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5850f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/097/5850f1.large.jpg

properly designed hardware, not just the right software; Motorola
provides HA Linux as an OS for its carrier-grade CompactPCI systems.

• Nokia Unveils Linux-Based Platforms for All-IP Mobility Networks: At the
3GSM World Congress in Cannes, France, Nokia announced a new Linux-
based platform technology for what is being called “All-IP” mobility
networks. The first products based on the new All-IP technology are to be
Nokia's open, carrier-grade FlexiServer and FlexiGateway platforms. In
January 2002, MontaVista Software announced that they had been chosen
by Nokia Networks to help develop Nokia's All-IP infrastructure.

Linus Says “kyllä” to Preemptible Kernel Patch!

The preemptible Linux kernel patch, originally introduced by MontaVista
Software and more recently championed by Robert Love, has now been
officially merged into the main Linux development-kernel tree, starting with
kernel version v2.5.4-pre6 [see Rick's interview with Love in the April 2002 issue
of LJ].

Although this enhancement came about as a means to provide faster
responsiveness of Linux for industrial and embedded control applications, the
benefits will be, in the words of Love:

...a means to an overall better system. Besides the
traditional markets for low latency—audio/video,
specialized embedded/real time, etc.—a preemptive
kernel can benefit any interactive task. The result is
hopefully a smoother, more responsive desktop.

New Linux PDA Being Developed in Bangalore

A Bangalore, India-based development company, perceived an opportunity
between the high-end, high-cost Pocket PC PDAs and the low-end, low-cost
Palm PDAs and created a new PDA called Kaii (which means “hand” in Kannada,
the local language) to fill that gap. According to an article published in the
Bangalore Times, Infomart (www.infomart.co.in) intends to sell the new Linux
handheld devices for around $200 US with a 320 × 240 pixel monochrome LCD
and for around $300 US with a TFT color LCD.

Infomart is trying for a high level of compatibility with Sharp's new Zaurus PDA,
from both a UI and application software perspective. To accomplish this, they
used the identical software stack: Lineo's Embedix Plus, Trolltech's Qt/
Embedded and Qtopia, Opera's browser and Insignia's Jeode JVM. In an effort
to minimize costs, however, the Kaii uses a 160MHz Hitachi SH3 processor and
offers a soft (on-screen), rather than physical, keyboard.

http://www.infomart.co.in

Figure 2. Kaii Linux PDA

Other Kaii features include 32-128MB RAM (depending on version) and 32MB of
either ROM or Flash solid-state storage memory, a USB interface with both
device and host functions, an RS232 serial port, an IrDA interface and
expansion slots for both CompactFlash Type II and MMC cards. Infomart plans
to make use of the USB host capability to add external peripherals such as
keyboards or specialty interfaces, making the Kaii useful for more than just
traditional handheld PDA purposes. The company is looking for global
manufacturing and marketing partners.

Question: Could this Zaurus-compatibility be the start of a trend among Linux
PDAs?

For the latest information on Linux PDAs, be sure to check out
LinuxDevices.com's “Linux PDAs Quick Reference Guide” at
www.linuxdevices.com/articles/AT8728350077.html.

Rick Lehrbaum (rick@linuxdevices.com) created the LinuxDevices.com and
DesktopLinux.com web sites. Rick has worked in the field of embedded systems
since 1979.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxdevices.com/articles/AT8728350077.html
mailto:rick@linuxdevices.com
http://LinuxDevices.com
http://DesktopLinux.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

It's Elemental—Natural Advantages

Doc Searls

Issue #97, May 2002

Doc contemplates the geology of the West as a metaphor for Linux's role in the
infrastructure of the civilized world.

I'm writing from the business class cabin of a United 777 en route from Chicago
to Los Angeles. To my left is an LCD display that pulls out of the armrest. On
screen is a map that tells me what I'm seeing out the window here on the right
side of the plane.

The map scrolls a series of views, like you get in a flight simulator program.
Right now it says we're heading toward the Rockies across Fort Collins, north of
Denver, Colorado. About 30 miles to the right is Cheyenne, Wyoming, a flat
pattern of streets and buildings surrounding the runways of an airport. The
town spreads around a convergence of highways and railroads, drawn in faint
lines across a landscape worn flat by almost constant winds. The story of the
land's geology is told again by snow, which appears to be swept poorly by a
gigantic broom, brushing northwest to southeast across endless stretches of
ranches and farms.

We pass over the Front Range, the Medicine Bows, the Sierra Madres. In the
distance I see the Big Horns, the Uintas—all rough features embossed on the
sky above by forces below. Not many millions of years ago much of the scene
out this window would have been as flat as Nebraska, but as the mountains
came up under the plains, the soft soils were “de-roofed”, perhaps more by
wind than by the rivers whose work is far more obvious. Even from up here you
can see why they say a Wyoming weathervane is an anvil on a chain.

I take more than a passing interest in all this because I've been steeping myself
for the last several years in the works of John McPhee, who does for geology
what Shakespeare does for love—except the virtues of geology are not so self-
evident. To McPhee, no rock has a story too dull to tell, which he proves, page
after page, book after book. McPhee's series of books on American geology

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

were only slightly condensed in 1998 into one fat work titled Annals of the
Former World. It won the Pulitzer it deserved. My favorite McPhee book is
Rising from the Plains, which weaves two tales into one: the story of Wyoming's
deep past and of geologist David Love, who has lived through the last 89 years
of it. “A geological map is a textbook on one sheet of paper”, McPhee writes.
And David Love, who grew up on a hardscrabble ranch in the very center of the
state, was the primary author of both the 1955 and 1985 editions of the
Geological Survey's Wyoming maps. He researched them mostly on foot and
guesses he has spent a quarter of his life sleeping outside.

What draws me to people like McPhee and Love is the sense of grounded
perspective they give us on a topic that should become increasingly
fundamental as both Linux and the computer industry mature. That topic is
infrastructure—or, to use a label I prefer, interstructure. I'm talking here about
our base-level computing and communications environments. Linux is down
there, sitting on top of the deeper and more universal environment we call the
Internet. It's infrastructural stuff. Every piece of code we add or change lithifies
into solid material we use to build the civilized world.

In geology the term competent refers to rock that's dependable. You can build
a house on it or with it, and you can trust that it won't break if you climb a steep
surface of it. It also has nothing to hide about itself. The same goes for code.
Infrastructural code is naturally competent. It is also both open to examination
and improvement. The intellectual and creative processes by which we improve
infrastructural code are no less natural than the geological forces that turn
granite into gneiss, limestone into marble and peridotite into serpentine.

Competence has another aspect. Here's David Love: “Human environment,
good and bad, starts with the rock, coupled with the other two major
necessities, water and air. Ruin one of these three basic essentials and
humanity is in deep trouble.” Now substitute “Internet” for “rock” and
“computing” for “humanity”, and Love's point starts to come home.

Infrastructure is what we depend on. And because it is naturally common and
abundant, a large number of us understand how it works and what it's good
for.

Explaining why the government of China decided to create its own Linux
distribution, Red Flag, Matei Mihalca, head of internet research, Asia-Pacific for
Merrill Lynch, points to Linux's “transparency”. This is the inherent
infrastructural advantage Linux enjoys over Windows. Even if Windows
becomes 100% reliable, the reasons why will remain opaque as long as the
source code remains closed. Build all you want with it, but don't ask it to serve
as bedrock.

This doesn't mean there's no room for commercial developers in the business
of making infrastructural bedrock. Dave Winer, the commercial developer
behind SOAP and XML-RPC (both open-source protocols) says, “Ask not what
the Internet can do for you, ask what you can do for the Internet.” Constantly
improving Linux is one answer to that question.

Now the little map tells me we're starting to head past Las Vegas, which looks
like a waffle pattern etched almost decoratively on the flat desert floor. In Basin
and Range, John McPhee explains that the mountains of Nevada were mostly
formed by extension: the distance between Salt Lake City and San Francisco is
increasing, opening up. This started recently, in the Miocene, only about eight
million years ago. The crust here has been spreading and breaking apart, and
the heavier edges of each block have been sinking into the mantle while the
lighter edges have floated up to form mountain ranges. Between them basins
have opened and filled with erosional debris.

Many of Nevada's basins were recently also at the bottom of Lake Lahontan, a
body of water as blue and subarctic as any in northern Canada. Many of today's
ranges were islands in Lahontan's midst. Lahontan evaporated as the Sierra
Nevada pushed out of California's deeps, casting a rain shadow to the east and
starving Lahontan and its surrounding lakes of water. The last ice age ended
ten thousand years ago, but the Earth continues to warm, leaving vast dry
puddles where Lahontan and other Nevada lakes used to be. Las Vegas now
reposes, oblivious to the coming deposits of mountain ranges eroding all
around it.

As we begin our descent into Los Angeles, I find myself thinking that in the long
run—in the period required for computing infrastructure to lithify—the real
fight will not be between Linux and Windows, but between those who respect
the nature of infrastructure and those who don't. Those who respect it see the
Internet is the only platform worthy of the noun. Those who don't respect it see
the Net as yet another plumbing system. Our fight with them will be over
regulation intended to protect business models that require control over a
plumbing system that the Internet's efficiencies threaten to obsolete. But we'll
win, because nature will be on our side.

email: doc@searls.com

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

mailto:doc@searls.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

The Role of Standards in Open Source

Lawrence Rosen

Issue #97, May 2002

And, on how new standards are often compatible with free and open-source
licensing.

Without standards, the Internet would become a Tower of Babel. Our freedom
to speak what we wish depends fundamentally on our agreement to speak the
same languages. Standards are the common linguistic foundation on which we
build our diverse world. To be useful for software, a standard must be available
worldwide and be free of encumbrances that prevent its widespread adoption.

Consider the implications for the owner of intellectual property (e.g., the owner
of a patent or copyright) who wishes to promote that property as the basis for
an industry standard. Or consider the interests of a developer of industry
standard software who learns that another person's intellectual property
blocks the implementation of the standard. Is private intellectual property
compatible with industry standards in an open-source world?

This is not an academic question. Standards organizations everywhere are
trying to decide how to incorporate private intellectual property into the
framework of the Free Software Foundation guidelines and the Open Source
Definition, under which source code must be published and the software must
be available for free copying, modification and distribution.

Patents pose the greatest threat to standards and their implementation in
open-source software. Any person who owns a patent containing claims that
are essential to the implementation of a standard can prevent you from
making, using or selling products that implement that standard.

I won't bother defining the phrase “essential claims” here, but consider the
effect if the only technically feasible or economically practical way to implement
a standard requires the use of patented technology. Since the law generally
doesn't mandate compulsory licensing of patents and doesn't define

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

“reasonable” royalties, the standard may be effectively off-limits for those who
can't afford to pay or to design around the blocking technology.

Many people complained publicly when the World Wide Web Consortium (W3C)
tentatively proposed a patent policy that would allow adoption of web
standards based on patented technology for which reasonable and
nondiscriminatory (RAND) royalties could be charged. The Free and Open
Source communities argued that such royalties—even if they are
“nondiscriminatory”, as between rich and poor—are not compatible with
software that is distributed with source code under licenses that permit free
copying, modification and distribution. As a result of that public outcry, the
W3C patent policy currently is being redrafted. By the time this article appears,
a new draft patent policy should be available for public comment at
www.w3c.org.

One solution to this patent problem for standards is to require that owners of
intellectual property license their patents, royalty free, for use in implementing
industry standards. Members of organizations such as W3C agree to do just
that (under certain conditions that they describe on their web site). Not all
standards organizations have such policies. Implementers of standards should
verify, by reviewing the patent policies of the organizations that promulgated
the standards, that there are no known patent obstacles to the implementation
of those standards.

Even when patents are licensed for implementation of the standard, the patent
license may not be compatible with the license under which the resulting
software will be distributed. For example, some patent license provisions
typically say that the patent is licensed only for implementation of the specific
standard (a “field of use” restriction).

The GPL is not compatible with patent licenses that are restricted as to field of
use. GPL software must be free so that anyone can create derived works,
including derived works that are used for other purposes. (Hackers say that the
code must be available for “forking” and for “reuse” in other applications.)
Patent licenses with field-of-use restrictions run afoul of section 7 of the GPL,
which reads in part: “[If] a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.”

Because business motives of patent licensors differ, you will need to read the
patent licenses, and the policies of the standards organizations, to make sure
that the license you receive to a patent is compatible with your open-source
software. Seek out standards organizations like W3C and the Embedded Linux

http://www.w3c.org

Consortium that invite input from the Open Source community on their patent
policies and procedures.

Be aware that “industry standards” are not always what they seem. Some
companies or standardizing organizations attempt to control standards
through copyrights on specifications, or by requiring payment for the use of
certification marks to demonstrate adherence to the standard. Such restrictive
techniques are fundamentally incompatible with open source and free
software.

Many of us in the Open Source community are working, often behind the
scenes, to convince companies to avoid restrictive standards and to share
control over such standards so as to make them truly available under free and
open-source terms. The good news is that our input is increasingly being
solicited, and that the resulting standards are often now compatible with free
and open-source licensing.

Legal advice must be provided in the course of an attorney-client relationship
specifically with reference to all the facts of a particular situation and the law of
your jurisdiction. Even though an attorney wrote this article, the information in
this article must not be relied upon as a substitute for obtaining specific legal
advice from a licensed attorney.

email: lrosen@rosenlaw.com

Lawrence Rosen is an attorney in private practice in Redwood City, California
(www.rosenlaw.com).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:lrosen@rosenlaw.com
http://www.rosenlaw.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #97, May 2002

Readers sound off.

Letters

Well-Tamed Demon

Your articles on configuring the pppd are outstanding [see Tony Mobily's
“Configuring pppd in Linux” parts I and II in the February and March 2002 issues
of LJ]. This is the way a HOWTO should be done—excellent hands-on
information that works, with complete directions for us beginners. Well done!
You can ask Tony back any time.

—Jack Dennon

Propagating Disease?

I read with interest Larry Rosen's “Unbiased License FUD” in your March 2002
issue. I am appreciative that Larry is dispelling the confusion about how the
GNU GPL works. He is quite correct that to have obligations under the terms of
the GNU GPL, one must actually create and/or distribute a derivate work of
some copyrighted software licensed under the GNU GPL.

However, while dispelling FUD in that area, Larry (perhaps unintentionally)
helped to spread similar FUD himself. In his article, Larry propagated the idea
that the “GPL is an infection”. Infections are (according to “dict” on my Debian
GNU/Linux system) things “which taint or corrupt morally” or “cause...disease”.

This sort of fear mongering about the GNU GPL became all too common during
summer 2001, when various high-ranking executives of Microsoft called the
GNU GPL an un-American cancerous virus that ate up software like a Pac-Man. I
doubt that Larry or your magazine want to affiliate themselves with that
concerted campaign of FUD.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

As a strong advocate of software freedom, I often tell people: “The GNU GPL is
not a virus; by contrast, it vaccinates you from harm.” The GNU GPL is designed
to share freedom with all who benefit from the software. No one is required to
“join the club”, but when you do choose to create derivative works of GNU
GPLed software, you have obligations to the community. The GNU GPL is
designed to create a software commons, with provisions that help avoid the
tragedy of the commons.

I urge your editorial staff and Larry himself to avoid using biased terms like
“infection” when trying to give “Unbiased License” information. The unbiased
way to describe the GNU GPL's nature in this regard is simple: “The GNU GPL
requires that those who distribute derivate works license the source of the
derivate work in a GPL-compatible way.”

—Bradley M. KuhnVice President, Free Software Foundation

Larry replies: Bradley, thanks for your letter. I usually try to avoid the term
“infection” when speaking of the GPL. However, I used that word in that
particular article because, as I quoted directly in my second paragraph, the
reader who responded to me used that word. I certainly did not intend to
propagate the notion that the GPL has virus-like attributes, in the sense of
things “which taint or corrupt morally” or “cause...disease”. I perhaps should
have used the word “inheritance” instead, as I have done in my other writings
about the GPL, because that word has more positive implications. Indeed, I
have recently started to use the term “reciprocity” to describe the effect of the
GPL and similar open-source licenses (including the MPL and CPL). Those
licenses require licensees to reciprocate by licensing their derivative works
under the same license as the work they were given. In contract law terms, I
contend, the reciprocity obligation is the “consideration” you pay for the grant
to you of the free license to the original code.

A Perl in the Spam

I have a few comments regarding David Bandel's Focus on Software column in
the March 2002 issue of Linux Journal. First, great job, David. Keep up the good
work! For me, your article is second only to Freshmeat when it comes to
discovering new software. Second, I was thrilled to see coverage of Vipul's
Razor (razor.sourceforge.net). I've found it to be incredibly effective in weeding
out my daily dose of spam.

Although I am a long time Procmail user, I've often found its recipes difficult (at
best) and cryptic (at worst). I can't begin to count the hours I've spent writing
and debugging what should be a fairly simple filter. I think many of even the
more hard-core Procmailers would be pressed to disagree with me on this
point.

http://razor.sourceforge.net

So, it was with no small amount of giddiness that I discovered
Mail::SpamAssassin. This module (accessible via CPAN.org) is a plugin to the
Mail::Audit module. The true advantage is that, because it's Perl, you can easily
filter your e-mail through a Perl script. I have a tutorial covering this at
PerlMonks (www.perlmonks.org) under the Tutorials section entitled
(appropriately enough) “A Beginner's Guide to Using Mail::Audit and
Mail::SpamAssassin”. Using these modules gives you the power of Perl
(renowned for its ability to parse text) to filter your e-mail. I've been using this
for several months now, and I've found that approximately 99% of my daily
spam is filtered appropriately. And, I'm proud to report that none of my e-mail
has been lost. Again, you're doing a great job. Keep it up!

—Stephen E. Hargrove

Sex Clarified

Seymour Cray didn't like virtual memory and has been quoted as saying:
“Memory is like sex; it's better when it's real.” Whereas Paul Barry (LJ March
2002, Letters) apparently wasn't aware of Seymour's quip, Linus certainly was;
his comment comparing software to sex is an obvious allusion. Perhaps it's not
that Linus needs to choose his words more carefully; perhaps it's that authors
should explain the literary significance of these words for the younger
generation.

—Collin Park

Netfilter Rescue

After spending a few nights with LJ [see David Bandel's “Taming the Wild
Netfilter” in the September 2001 issue, available at /article/4815] at hand's
reach to configure my firewall, I came across the URL www.boingworld.com/
workshops/linux/iptables-tutorial. This is to me the best source I have found on
Netfilter. I believe the reference to Rusty Russel's document is a tribute to
Rusty's own work, but the document is not usable for a basic user like me, a
simple, average Linux user! Please to advertise this URL to your user if they
have troubles using the wild, wild Netfilter.

—Thomas Smets

For more on Netfilter, see David Bandel's more advanced article “Netfilter 2: in
the POM of Your Hands” in this issue.

—Editor

http://CPAN.org
http://www.perlmonks.org
https://secure2.linuxjournal.com/ljarchive/LJ/089/4815.html
http://www.boingworld.com/workshops/linux/iptables-tutorial
http://www.boingworld.com/workshops/linux/iptables-tutorial

GT Explained

Gary Bickford's letter in the February 2002 issue of LJ states: “GTO is an
acronym (Gran Turisimo Omologato), which according to AltaVista means 'great
accredited tourism', which I suspect doesn't express the flavor of the phrase.”

He's right—Gran Turisimo refers to a racing class (Grand Touring, or GT) of cars,
and Omologato (“homologated” in English) refers to the particular group of cars
that was built specifically to fulfill the racing organization's requirements. As it
turns out, Ferrari cheated on this; they never actually built the number of cars
they were supposed to, but the organization never called them on it.

Most Pontiac dealers, when asked where the GTO moniker came from, were at
a loss to explain any of this when the acronym was tacked onto the 389-
engined version of the Pontiac Tempest.

—David Spellman

Speedier PHP

I found a small problem when using the caching PHP file [see Bruno Pedro's
“Improving the Speed of Web Scripts” in the March 2002 issue of LJ]. The md5
hash is generated by using the PHP_SELF name of the called PHP script. But
what if I generate content depending on the query string? I changed from
PHP_SELF to REQUEST_URI, so it generates a unique cache file per unique
parameters. This way I saved 90% execution time compared to running against
my MySQL data sources.

—Kai Kretschmann

Erratum

In the March 2002 issue, on page 94, “'Using Mix-ins with Python', Linux Journal,
April 2000” should read “'Using Mix-ins with Python', Linux Journal, April 2001”,
i.e., the referenced article appeared in the April 2001 issue, not 2000.

—Chuck Esterbrook

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UPFRONT

Various

Issue #97, May 2002

Stop the Presses, LJ Index and more.

Who says computer mags have to be dry? We've wetted this issue by hiding a
bottle of beer somewhere within its pages. So put on your 3-D glasses (or don't
—it will probably make it harder) and look for the bottle. If you find it, send the
page number to info@linuxjournal.com by May 31st. The first 100 people to
send correct answers will receive a “Powered by Linux” license plate frame and
one of each of our popular Linux bumper stickers.

The Largest Open-Source Event in Latin America to Happen May 2-4. 2002

Richard Stallman is one of over 200 speakers set to talk at the largest open-
source event in Latin America. Every year, thousands of members of the Open
Source community meet at the Fórum Internacional do Software Livre,
scheduled this year from May 2-4, 2002 in Brazil.

Rio Grande do Sul, the southernmost state in Brazil and host of the event, is a
leader in the adoption of open source by the government and commercial
users. The state has specific legislation regulating the use of software by
government agencies, giving preference to open-source software.

More information on the Fórum can be found at the official site,
www.softwarelivre.rs.gov.br/forum (Portuguese) or by e-mail at
contato@softwarelivre.rs.gov.br.

—Marcio Saito

Linux Bytes Other Markets: Linux Helps Make Meals Special

Ypsilanti, Michigan, February 4, 2002—Linux, the open-source operating
system, is at the heart of a popular new recipe service, recipesbyemail.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:info@linuxjournal.com
http://www.softwarelivre.rs.gov.br/forum
mailto:contato@softwarelivre.rs.gov.br
http://recipesbyemail.com

Developed by Tap Internet, this service allows anyone with an e-mail client to
search hundreds of recipes quickly and easily.

“It was something originally done as a proof-of-concept for a client—a database
searchable through e-mail”, said Michael Kimsal, director of Tap Internet.

But soon after we'd finished the core technology, we
decided to put up a “sample” to show other clients.
Recipesbyemail.com has quickly become a staple for
many users on the Internet to find just the recipes
they're looking for.

A sizable percentage of the loyal users have turned out to be blind, due
primarily to the fact that many web sites are so wrapped up in JavaScript
rollovers and fancy flash animation that users relying on text-to-speech
systems cannot use them at all. “It was quite interesting to get e-mails from
some of these users because it was something I'd never even considered
before”, said Kimsal.

“We intentionally keep the e-mails text-only to ensure maximum compatibility
whether you're using Outlook or a Palm Pilot or a cell phone”, said Kimsal. “By
building on Linux, we were able to do this on a shoestring and still provide
value to the users, many of whom don't have very fast connections or modern
browsers.” The system is built on Slackware Linux, using a combination of Perl,
MySQL, procmail and PHP.

“We will be introducing a new feature soon to allow users to send in their own
recipes, which we hope will help increase interest in the system even more.”

—Recipesbyemail.com

LJ Index—May 2002

1. Pentagon transactions, in trillions of dollars, for which there is no
accounting: 2.3

2. Approximate amount, in millions of dollars, wasted by the Pentagon in the
last two minutes: 2

3. Number of moons in the solar system with diameters larger than the
planet Pluto: 8

4. Number of kilometers by which the diameter of Earth's moon exceeds
that of Pluto: 1,176

5. Hours between the crawling of a barely exposed web page by an e-mail-
harvesting robot and the arrival of its first spam: 8

6. Estimated ten-thousandths of a second that Earth's rotation will be
slowed by global warming by 2100: 1

7. Percent by which the world's over-65 population will grow by 2025: 100
8. Percent by which the world's number of children will grow by 2025: 3
9. Number of wireless public “hot spots” scheduled for deployment in Korea

before the Soccer World Cup this summer: 25,000
10. Percentage of users who arrive at web sites by direct navigation or

bookmarks (rather than search engines), as of February 6, 2002: 52
11. Same as above, one year earlier: 46
12. Millions of dollars in reported Yahoo profits in 2000: 71
13. Billions of dollars in losses Yahoo would have had in 2000 if option

expenses had been factored in: 1.3
14. Percentage of engineers whose career interests solidified before or during

10th grade: 59
15. Percentage of engineers who “decided to pursue their careers because of

an affinity for math and science and their desire to innovate and explore
new approaches to everyday actions”: 79

16. Billions of dollars in pocket change circulating in the United States: 7.7
17. Number of operating systems bundled with a $399 US PC at

Walmart.com: 0
18. Number of Wal-Mart stores worldwide: 4,382
19. Low end of estimated range of Linux users: 2,403,060
20. High end of estimated range of Linux users: 60,076,500

Sources:

1-2: CBS News, January 29, 2002

3-4: Solarviews.com

5-6: DSL Reports (dslreports.com)

6: Astronomy.com

7-8: United States Census Bureau

9: Wireless World Forum

10-11: ZDNet UK, sourcing WebSideStory

12-13: Fortune

http://Walmart.com
http://www.dslreports.com

14-15: MathSoft survey of 1,200 engineers (mathcad.com)

16: Business 2.0

17-18: Wal-Mart

19-20: Linux Counter, February 21, 2001

Netcraft: Steady as She Goes

Netcraft's latest (January 2002) web server survey (www.netcraft.com/survey)
still has Apache in the lead among active sites with a 63.69% share, up 0.35%.
Microsoft IIS holds a 26.07% share, down 0.55%. Both saw increases in
numbers of servers. iPlanet was third with 2.99%, and Zeus was fourth with
2.16%. Both were essentially unchanged.

Netcraft also reported “mixed fortunes” for Sun's Cobalt subsidiary, which sells
Linux-based web servers. “Although numbers of IP addresses on Cobalt
machines has increased over the last year, their share of the total number of
sites running on Linux has fallen, almost relentlessly month on month.”
Netcraft notes that two large customers have switched from Cobalt to
conventional Linux machines. Texas ISP Everyone's Internet recently
announced “the largest single purchase ever by an independent North
American ISP from Cobalt”. The company bought seven hundred Cobalt RaQ
servers.

—Doc Searls

It's Trivial

Questions

Q1. Whose web site is titled “The homepage of a WWW-illiterate”?

Q2. Torvalds commenting on a certain person's rant about open-source
software: “I'd rather listen to Isaac Newton than to X. He may have been dead
for almost 300 years, but despite that he stinks up the room less.”

Simple question: who is Torvalds talking about?

Q3. What's the collective noun for a group of penguins?

Q4. Vinod Valloppillil of Microsoft certainly said quite a few flattering things
about Linux:

http://www.mathcad.com
http://www.netcraft.com/survey

“Linux represents a best-of-breed UNIX that is trusted in mission-critical
applications.”

“Linux has been deployed in mission-critical environments with an excellent
pool of public testimonials.”

“I previously had IE4/NT4 on the same box, and by comparison the combination
of Linux/Navigator ran at least 30-40% faster when rendering simple HTML +
graphics.”

Where did Vinod Valloppillil make these flattering comments about Linux?

Q5. We all know Linus was studying at the Department of Computer Sciences,
University of Helsinki when he started working on Linux. But what is Linus'
mother tongue?

Q6. Ray Tomlinson, a scientist working at BBN, Cambridge achieved a unique
distinction in 1971. What was it?

Q7. A word origin question: William Gibson, in his famous novel Necromancer,
coined a word that has become very popular. What word?

Q8. What is Linus Torvalds' middle name?

Q9. Which application is Linux Journal talking about when it says “You know
your program has caught on when people start to use its name as a verb”?
Later in the same article LJ says, “It's no coincidence that the spread of this
application has coincided with Linux distributions finally paring down the menu
of potentially exploitable services offered by default.”

Q10. The author of this seminal work ends his acknowledgements with “and
AT&T Bell Labs for firing me and making this all possible”. While talking about
this book, Wired magazine says, “The book the National Security Agency never
wanted to be published.” Too many clues already, but name the book and
author.

questions and answers.

Answers

A1. Linus Torvalds—check it out at www.cs.helsinki.fi/~torvalds.

A2. Craig Mundie, Microsoft Senior Vice President.

http://www.cs.helsinki.fi/~torvalds

A3. A waddle of penguins or a raft of penguins. A group of penguins in water is
called a “raft of penguins”, while a group on ice is called a “waddle of penguins”.
This was decided at the 4th International Penguin Conference in Chile in
September 2000.

A4. In the (in)famous Halloween Documents. In case you haven't heard of the
Halloween documents, go to www.opensource.org/halloween/halloween1.html.

A5. Though Linus grew up in Helsinki, the capital of Finland, his mother tongue
is Swedish. Finland has a significant Swedish-speaking population and they call
themselves finlandssvensk.

A6. He sent the world's first network e-mail. And according to him, the first e-
mail most probably was something as innocuous as QUERTYIOP.

A7. Cyberspace.

A8. Benedict.

A9. Fyodor's Nmap. The article is the Editors' Choice Awards [December 2002
issue of LJ, /article/5525], and Nmap was judged the best security tool.

A10. Applied Cryptography by Bruce Schneier.

—Sumit Dhar

Stop the Presses: Linuxcare Founders Launch Sputnik Wireless Network

While Boingo (the new national wireless internet system headed by EarthLink
founder Sky Dayton) has been getting a lot of attention, the three Linuxcare
founders—Dave Sifry, Dave LaDuke and Art Tyde—have been quietly building a
system of their own—one based on the sharing model pioneered by the Free
Software, Open Source and Linux movements. The company is Sputnik, and
after a cautious beginning, the service has finally been launched.

To put Sputnik in context, it helps to see a wireless network (802.11b, or WiFi)
as one of three things: 1) a closed wireless Ethernet LAN, 2) a wireless way to
get on the Net for a fee or 3) a wireless way to get on the Net for free. Any one
of the three might show up in your wireless client software when your laptop is
within range of a “hot spot”. But only the last two offer ways to get on the Net.
The main difference between Boingo and Sputnik is that Boingo aggregates
businesses offering number two, while Sputnik extends both numbers two and
three—especially three. Think of it as a fee-for-use value add-on to all the
participating hot spots in the world.

http://www.opensource.org/halloween/halloween1.html
https://secure2.linuxjournal.com/ljarchive/LJ/092/5525.html

Here's the difference in frame of reference: Boingo comes from the PC world,
and Sputnik comes from the Linux/UNIX world. Boingo offers users client
software and service for a fee, while it offers service providers a uniform way to
interact with those users, along with a straightforward revenue stream. Sputnik
offers users a way not only to take advantage of WiFi bandwidth, but to serve it
up as well. As with Linux, your laptop is both a client and sever. You become a
fully empowered part of the system.

With Sputnik Gateway Software, you distribute bandwidth while you use it. Your
laptop becomes an access point—a hot spot. But instead of performing as an
indiscriminate hub, Sputnik's gateway acts as an intelligent router, sending
traffic by priority to other Sputnik members. The system expands with each
new member. Dave Sifry says, “The gateway is a smart edge device, there is no
need to run a special client in order to use it. No software to download onto
your box! Totally standards-driven!”

Here's how Glenn Fleishmann of 802.11b Networking News puts it:

This is totally amazing.

The Sputnik folks have solved all the problems Boingo
didn't while offering an interesting, viral alternative.
They solve the firewall issue (local networks are
protected while the AP is open), authentication issue
(captive portal without any work) and priority issue
(local users and Sputnik affiliates have QoS above
random folk).

Because being a member opens the rest of the
network to you for free, it plays on both aspects of the
Internet in general and wireless community networks
in particular: enlightened self-interest, as your
adoption increases the size of the network and the
likelihood of others to join; and generous selflessness,
as you have nothing in particular to gain by allowing
others to use your access point and network. Only in
combination do these two virtues turn into a viral
message.

Of course, some may cavil at this: it co-opts
community networks by offering a prefab, PC-based
package that looks like a closed box. Money is only
taken from outsiders, those not generous or
sophisticated enough to become affiliates.

I'm curious if this will provoke a firestorm of criticism.

The gateway comes with a firewall. It also serves as an application platform,
does caching, tracks usage, handles authentication, remote management and

other things. Its core technologies are also open source and available under the
GPL.

Subscribers pay a monthly fee, but for a limited time (as we go to press),
subscribers can roam for free. Sputnik is at www.sputnik.com.

—Doc Searls

They Said It

SETI is a science, not a screensaver!

—SETI Institute (www.seti.org)

The present invention relates to the creation and use of synthetic forms of
existence, or androids, and more specifically relates to the development of a
universal epistemological machine in which any forms of the universe,
conventional technologies included, are represented, embodied and realized as
eternal moments of an infinitely expanding continuum of enabled existential
forms, as an alternative approach to resolving the problems of the human
condition.

—Patent No. 6,341,372: “Universal machine translator of arbitrary languages”,
January 22, 2002

With open mail relays, lists of 30 million e-mail addresses and a cable modem,
it only takes a handful of professional spammers...to deposit ten or more daily
pieces of spam into the mailbox of practically every frequent user of the Net.

—DSL Reports

Linux keeps me up at night in terms of the energy that IBM is putting in it. The
thing that's a corollary to that—but much more important—is the intellectual
issues associated with that, GPL in particular. I worry a lot because it goes to
the heart of whether you can have a business selling software. Whether (or not)
we're innovative keeps me up at night....The complexity, the legal restrictions
keep me up at night. As to why I'm still here, I don't know. I do love technology.

—Jim Allchin

I finally found a really interesting Linux-based alternative to Microsoft's tools
and applications. But somehow I couldn't get excited about going after
Microsoft's crown jewels.

—Stewart Alsop, venture capitalist and Fortune columnist

http://www.sputnik.com
http://www.seti.org

Business revolutions happen whenever demand acquires the power to supply.

—Doc Searls

If in the real world everybody is going to be famous for 15 minutes, on the Web
everybody gets to be famous for 15 people.

—David Weinberger

There is nothing stable in the world; uproar's your only music.

—John Keats

Next Move: Sell It with Linux for the Same Price

Want to know what a headless, vanilla white box PC ought to cost? It's hard to
imagine a better place to check than Wal-Mart.

At the Wal-Mart web site (www.walmart.com) you'll find a generic 1GHz Intel
white box (the Microtel SYSMAR116) with the usual state-of-the-moment
features and figures: 128MB RAM, 40GB drive, keyboard, mouse, modem,
amplified speakers, floppy, etc. And in bold uppercase letters, this welcome
disclaimer:

MONITOR - NOT INCLUDEDOPERATING SYSTEM - NOT INCLUDED

Commodities don't get much more commodified than that.

The price: $399

The site: www.walmart.com/catalog/product.gsp?product_id=1731327

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.walmart.com
http://www.walmart.com/catalog/product.gsp?product_id=1731327
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

From the Editor

Richard Vernon

Issue #97, May 2002

Welcome to Linux Journal's kernel issue. Though it's true what Ted Ts'o says in
this month's interview about the more exciting work in the Linux community
happening in user space than in the kernel, there are still enough intriguing
developments in the kernel to merit devoting an issue to it.

In fact, some of the most exciting recent kernel developments are covered in
this month's pages. Last month we ran Rick Lehrbaum's interview with the
preemptible kernel patch maintainer, Robert Love. This month Robert wrote a
feature article explaining just how the patch lowers latency and how this
translates to performance benefits, not only for those needing real-time
efficiency, but also for regular users.

Greg Kroah-Hartman, the Linux USB and PCI Hot Plug kernel maintainer,
reveals how the Linux kernel, as of 2.4.15, handles the kernel-level difficulties
associated with hot-pluggable devices by way of the PCI Hot Plug driver core.

While iptables are no longer the latest in kernel development, the Netfilter code
is constantly evolving, and many are still struggling with iptables building. Last
year for our kernel issue David A. Bandel wrote an introductory-level article on
Netfilter. He received a deluge of e-mail requesting further guidance. So to
satisfy our readership, David delves into more advanced iptables building. Look
for a further sequel to David's article in next month's Kernel Korner.

Continuing in a security vein, Michael Bacarella explains how POSIX capabilities
in the Linux kernel can provide a useful middle-ground permission level that
grants more liberal permissions than a standard user, but not the potentially
harmful level of root.

In our last feature article, David Frascone brings us to the border of user land
and the kernel by explaining the benefits of kernel module debugging with

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

User-Mode Linux. UML provides something of a virtual machine for safer
debugging.

Speaking of user land, one of the more intriguing developments there, at least
for our production staff at Linux Journal, may be the Scribus Project
(web2.altmuehlnet.de/fschmid/index.html). Here at Linux Journal we try to
practice what we preach, and everyone from the accountant to the receptionist,
to the marketing and editorial departments do their work on Linux
workstations. The only thing we don't do on Linux is magazine layout. Hopefully
the Scribus Project will allow us to change that.

Scribus is a GPLed layout program for Linux. It's still in its early stages of
development with a team of three—two of whom do the documentation,
leaving all the programming to Franz Schmid. Franz is currently working on
adding new object types like curves, polygons, etc. The team's goal is to match
the quality of programs such as Adobe PageMaker and QuarkXPress.

I'm sure Franz wouldn't object if someone wanted to lend a hand. He can be
reached at Franz.Schmid@altmuehlnet.de.

Richard Vernon is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:Franz.Schmid@altmuehlnet.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Tech Support

Various

Issue #97, May 2002

Our experts answer your technical questions.

Best of Technical Support

Permissions Change on /etc

I am experiencing random permission 600 applied to /etc. Sometimes I can go a
day without being struck, and sometimes only minutes later, after doing chmod

755 /etc, it's back to 600. I thought this might be some protection feature in the
kernel to protect against bad memory or mass storage. I have changed out
memory, leaving only one stick fully qualified by my motherboard maker, but to
no avail. I can't play with the disks right now. I reduced the number of
processes to those listed in the attached file. Is this a normal feature due to
marginal hardware, a misinstalled application or is my system hacked?

—Stan Katz, stan@cloud9.net

Hardware issues will (almost) never cause filesystem changes in this manner
and certainly not in such a consistent manner. It's time to look for applications
(possibly malignant) that may be causing the problem. You need to examine
your other log files—something might be a hint there. You only included
messages through the system boot, nothing from its operation. Start by looking
in all crontab files, tracing out processes that are run from it. Also compare the
system dæmon binaries you are running, as well as other regularly used tools,
against those on your installation media to verify that they have not been
replaced with a Trojan horse. Finally, check for applications that are setuid root,
since those are a sure tip-off that you have been compromised. However, it's
unusual for a Trojan horse to restrict the permissions on a directory. Without
access to the system, its log files and the ability to examine the files installed,
we cannot further analyze the problem.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:stan@cloud9.net

—Chad Robinson, crobinson@rfgonline.com

You almost certainly have a cron job that is resetting the permissions, or worse,
a cracker kernel module that is messing around with your system. You should
try chmod 755 /etc; chattr -i /etc to make /etc immutable, which hopefully will
help make whatever program is resetting the permissions fail (for a cron job,
you may even get an error by mail). Typing rgrep -r chmod /etc /var/spool/cron

may also give you a clue as to what is changing the permissions.

—Marc Merlin, marc_bts@valinux.com

This is not a feature. Sounds like a Trojan or misinstalled program. This is a
difficult problem to find. Try to do an lsof /etc to see if any program is currently
holding the directory open. This may give you a clue. Next, shut down various
services/programs until you find the offending program. It might be easier to
re-install your version of Linux from scratch.

—Christopher Wingert, cwingert@qualcomm.com

I Do Believe in /dev/st0!

I can't access my tape! Running dmesg shows:

scsi0 : Adaptec AHA274x/284x/294x
 (EISA/VLB/PCI-Fast SCSI) 5.1.33/3.2.4
 <Adaptec AHA-294X Ultra SCSI host adapter>
scsi : 1 host.
 Vendor: ARCHIVE Model: Python 28454-XXX Rev: 4ASB
 Type: Sequential-Access ANSI SCSI revision: 02
 Vendor: FUJITSU Model: M1606S-512 Rev: 6236
 Type: Direct-Access ANSI SCSI revision: 02
Detected scsi disk sda at scsi0, channel 0, id 3, lun 0
scsi : detected 2 SCSI generics 1 SCSI disk total.
(scsi0:0:3:0) Synchronous at 10.0 Mbyte/sec, offset 15.
SCSI device sda: hdwr sector= 512 bytes.
Sectors= 2131992 [1041 MB] [1.0GB]

I can access the SCSI disk but not the tape. Both eth0 and aic7xxx are on
interrupt 9. I have SCSI tape support compiled in the kernel. This is all on a
P133.

—Andy Prowse, azp80@amdahl.com

Normally, dmesg(8) should show a line referencing st0 as a device found in the
summary, just below the entry about sda. See the example below from my own
system:

Detected scsi tape st0 at scsi0, channel 0, id 6, lun 0

Your tape drive is being discovered as a “generic” device, but you cannot use
mt(1) without the tape driver active. Check your kernel compilation options.

mailto:crobinson@rfgonline.com
mailto:marc_bts@valinux.com
mailto:cwingert@qualcomm.com
mailto:azp80@amdahl.com

Depending on your kernel version, this should be under “SCSI support” and
named “SCSI tape support”.

—Chad Robinson, crobinson@rfgonline.com

Routing to ppp0

I installed Red Hat 7.2 with a network card and successfully connected to the
Internet with a cable modem connection hosted on another machine in the
network. Now I need to connect to a dialup account. The modem is correctly
configured (I can log in successfully). But when I try to work with the dialup
account, I am unable to connect to its mail server because my Linux box is
using eth0 routes as the default routes. How do I change the routing tables to
fix this? I already checked the box to make ppp0 the default connection, but
that did not solve the problem.

—Kelvin Barnes, Kelvin.Barnes@att.net

You have a default route going to your Ethernet interface that is superseding
the default route added by PPP. You can try route del -net default before
bringing your PPP interface up, and then it should work. You also can use the
Red Hat GUI to bring eth0 down and back up.

—Marc Merlin, marc_bts@valinux.com

Die Process, Die, Die

Recently, several attempts to run vi /etc/filename resulted in vi freezing and
Telnet/SSH not responding to break commands (Ctrl-C, Ctrl-B, Ctrl-D). I logged
in to the server again and tried to kill the process. The man pages said that if kill

didn't work, it was probably a result of the kill command being a part of the
shell. So I tried /bin/kill <pid>, /usr/bin/skill <pid>, /usr/bin/killall vi with 9, 15
and several other signals. Running top and killing the process via top didn't
work either. It has been a couple of days and about a dozen vi processes are
still running. I need a license to kill!

—Peter D'Souza, souza@broadleaf.net

If a process is stuck in kernel state due to a kernel or network problem, you will
not be able to kill it, even with kill -9. In that state, you can usually only reboot
to get rid of the process.

—Marc Merlin, marc_bts@valinux.com

mailto:crobinson@rfgonline.com
mailto:Kelvin.Barnes@att.net
mailto:marc_bts@valinux.com
mailto:souza@broadleaf.net
mailto:marc_bts@valinux.com

I Have No Valid Modes and I Must startx

Why can I not get startx to work on a Toshiba Satellite Pro 4600 that uses a
Trident CyberBladeXP video card? I am running Red Hat 7.2., and I get the
following error:

Fatal server error:
No Valid modes found.

—Troy, coder@starmail.com

There is one update from Red Hat's site that mentions solving a problem with
your video card. Please try to upgrade the necessary packages and try again.
You can find more information about it at rpmfind.net/linux/RPM/redhat/
updates/7.2/i386/Xconfigurator-4.9.39-2.i386.html.

—Mario Bittencourt Neto, mneto@buriti.com.br

DragonLinux almost Boots

When I run DragonLinux everything loads perfectly until Space Freed:. Then it
says:

Warning:Unable to open an initial console
Kernel Panic:no init found.
Try passing init= option to kernel.

—Alok Bhatt, dkbhatt@eth.net

You may have corrupted the root filesystem after you finished installing. I
suggest that you reinstall Linux and make sure that you make a filesystem on
all Linux partitions. If you experience the same problem again, then you need
to contact the DragonLinux people.

—Usman Ansari, usmansansari@yahoo.com

Teaching Red Hat Japanese

I thought I'd take the opportunity to e-mail you about configuring Red Hat 7.0
to be able to use Japanese. I have a 109-key Japanese keyboard and am using a
Japanese 106 keymap that works okay, despite being unable to use the
Japanese-English switch key. I enabled deadkeys and installed all the Japanese
language packets during installation. These packets, WNN and Kanna packets,
among others, start up on boot but don't activate for some reason. Any help
would be appreciated. I think I could solve it by getting the right keyboard map.
Japanese characters will appear on most software in KDE and GNOME, but
getting output from the keyboard is the problem.

mailto:coder@starmail.com
http://rpmfind.net/linux/RPM/redhat/updates/7.2/i386/Xconfigurator-4.9.39-2.i386.html
http://rpmfind.net/linux/RPM/redhat/updates/7.2/i386/Xconfigurator-4.9.39-2.i386.html
mailto:mneto@buriti.com.br
mailto:dkbhatt@eth.net
mailto:usmansansari@yahoo.com

—Graeme Jensen, magic@zae.att.ne.jp

I recommend you use a distribution that has been widely tested with Japanese.
You'll have better odds with those things working out of the box. I have to
admit I'm not sure which is the Japanese distribution of choice today, but you
may want to give Turbolinux a try.

—Marc Merlin, marc_bts@valinux.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:magic@zae.att.ne.jp
mailto:marc_bts@valinux.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #97, May 2002

VT100 Set-Top Box, Port Server CM, CrossOver Plugin v1.1 and more.

New Products

VT100 Set-Top Box

VT Media Technologies has added the VT100, the Edge, to its line of set-top
boxes. The Edge enables several data streams, including Ethernet 10/100 to be
converted to composite analog RF data streams or digital S-Video data streams
compatible with all standard television sets. A full browser and support for all
plugins are provided, and the Edge also is compatible with CRT monitors.
Options available for the Edge include a DVD player, CD-RW, floppy and
standard IDE hardware. It also supports the Web-Media software announced by
National and Century Embedded Software. Developer kits for the Edge are also
available on the VT web site.

Contact VT Media Technologies, 6307 County Road 87 SW, Alexandria,
Minnesota 56308, 320-763-8491, sales@vtmt.com, www.vtmt.com.

PortServer CM

PortServer CM is a new line from Digi International that offers products for data
center management. Available in a 1U, 32-port design, the rackmountable
PortServer CM allows administrators to monitor and control any mix of
connected devices from anywhere on the corporate network, including
standard TCP/IP connections over Ethernet LANs or dial-up modem
connections. SSH v2 is used for security, and other supported protocols include
DHCP, PPP, SLIP, NTP and FTP. Memory specs are 64MB SDRAM and 4MB Flash
(upgradeable).

Contact Digi International, Inc., 11001 Bren Road East, Minnetonka, Minnesota
55343, 1-800-344-427 (toll-free), www.digi.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@vtmt.com
http://www.vtmt.com
http://www.digi.com

CrossOver Plugin v1.1

Version 1.1 of the CrossOver Plugin from CodeWeavers, Inc., is designed as a
Windows-to-Linux adapter for Windows browser plugins and e-mail clients. In
addition to opening MS Office documents and eFax files in any KDE or GNOME
application, version 1.1 supports Windows Media Player streams. Other
improvements in CrossOver 1.1 include acceptance of all TrueType fonts,
RealPlayer files, the Trillian plugin, Yahoo Messenger, the iPIX plugin and
Chime, a plugin for the chemical industry. CrossOver software supports most
browsers, including Netscape, Mozilla, Konqueror, Opera, SkipStone and
Galeon.

Contact CodeWeavers, Inc., 2550 University Avenue West, Suite 493S, St. Paul,
Minnesota 55114, 651-523-9300, sales@codeweavers.com,
www.codeweavers.com.

Desktop/LX

Standard and Deluxe box sets of Desktop/LX, a Linux distribution from Lycoris
(formerly Redmond Linux Personal), are now available. The Standard box set
includes the Desktop/LX CD-ROM, a 30-page installation manual and 60 days of
e-mail support. The Deluxe box set also includes a source code CD-ROM and a
DevTools CD-ROM, allowing Desktop/LX Deluxe to be used as a development
platform. A graphical installation autodetects supported video, audio and
network hardware, as well as attached printers. Desktop/LX offers an easy and
fast system setup and a wizard that allows internet-connected users to get the
latest versions and upgrades.

Contact Lycoris, PO Box 2313, Redmond, Washington 98073, 425-869-2930,
sales@lycoris.com, www.lycoris.com.

PS-R1242, Dual Xeon 1U Server

Based on Intel's E7500 chipset, the PS-R1242 1U server supports dual Pentium
Xeon processors up to 2.2GHz, providing supercomputing power aimed at the
media/entertainment and scientific industries. The PS-R1242 has optional SCSI
Ultra160 or ATA 100 RAID controllers and can be configured with either two IDE
or three SCA hot-swap drive bays. It also supports up to 8GB of two-way
interleaved DDR SDRAM. Additional features include a 1GB Ethernet port, one
Fast Ethernet port incorporated on the motherboard with two available PCI
133/100 slots and a 350/400W cold-swap power supply.

Contact Promicro Systems, Inc., 12635 Danielson Court, #203, Poway, California
92064, 858-391-1515, sales@promicrosystems.com,
www.promicrosystems.com.

mailto:sales@codeweavers.com
http://www.codeweavers.com
mailto:sales@lycoris.com
http://www.lycoris.com
mailto:sales@promicrosystems.com
http://www.promicrosystems.com

NASAS-2040

Ateonix Networks introduced the NASAS-2040, a network-attached storage
appliance with a feature set designed for small to medium-sized businesses. It
supports any combination of up to four ATA/100/133 disk drives from any
manufacturer. The storage capacity of each disk can be up to 128 petabytes,
with disks of varying capacity. Upgrades can be done on-site by in-house
personnel, and hard disk can be added or replaced via front-panel access. All
software updates, including the network OS, drivers and user configuration
data, can be updated via a web interface. All of the NASAS-2040 software
resides on Flash memory, and it supports RAID 0, 1 and 5.

Contact Ateonix Networks, Inc., 42618 Christy Street, Fremont, California 94538,
510-656-8400, sales@ateonix.com, www.ateonix.com.

SnapGear PRO+

With an integrated V.90 modem for automatic failover for ADSL and cable-
connected customers, the SnapGear PRO+ VPN router appliance offers the
ability to switch to a conventional modem connection in the event of an outage.
PRO+ has a 3DES capacity of 35Mbps and specific optimizations for the PPPoE
protocol used by ADSL. It also can support network throughput up to 18Mbps.
Two 10/100 Ethernet interfaces are standard for WAN and LAN traffic, in
addition to the modem. A built-in PPTP client and server allows Windows users
to connect to the PRO+ without a third-party client. Other features include
RADIUS/TACACS+ authentication and dynamic DNS support.

Contact SnapGear, Inc., 7984 South Welby Park Drive, #101, Salt Lake City, Utah
84088, 801-282-8492, contact@snapgear.com, www.snapgear.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:sales@ateonix.com
http://www.ateonix.com
mailto:contact@snapgear.com
http://www.snapgear.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/097/toc097.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Interview
	Toolbox
	Columns
	Departments
	Lowering Latency in Linux: Introducing a Preemptible Kernel
	Robert Love
	Latency Solutions
	The Preemptible Kernel
	The Results
	Changes to Programming Semantics
	Work for the Future
	Conclusion

	How the PCI Hot Plug Driver Filesystem Works
	Greg Kroah-Hartman
	Acknowledgements

	Netfilter 2: in the POM of Your Hands
	David A. Bandel
	Preparing Your System for an iptables
Upgrade
	Digging into iptables
	Compiling and Installing iptables
	Some Installation Closing Notes
	The Wall—One Brick at a Time
	Topology, Shmopology—Where Do I Plug in My
Laptop?
	Running iptables on Nonfirewall Systems
	Summary and a Look Ahead

	Taking Advantage of Linux Capabilities
	Michael Bacarella
	The Proc Interface
	The System Call Interface
	The Filesystem Interface
	Conclusion

	Debugging Kernel Modules with User Mode Linux
	David Frascone
	Virtual Machines and UML
	Setting up UML
	Debugging Modules
	Debugging with printk
	Debugging with GDB
	Conclusion

	Crystal Space: an Open-Source 3-D Graphics Engine
	Howard Wen
	Crystal Space's Features: the Good and the
Bad
	The Future of Crystal Space

	The Beowulf State of Mind
	Glen Otero

	Interview with Ted Ts'o
	Don Marti, Vernon

	Databases and Zope
	Reuven M. Lerner
	Database Connections
	Installing psycopg
	Configuring psycopg
	ZSQL Methods
	ZSQL Arguments
	Inserting
	Conclusion

	Getting to Know You...My Kernel
	Marcel Gagné

	Understanding IDS for Linux
	Pedro Paulo Bueno
	What Is an IDS?
	IDS Models
	Tripwire
	PortSentry
	Swatch
	LIDS
	NIDS
	Snort
	Hybrid-IDS
	Prelude-IDS
	Understanding and Creating Signatures
	Analyzing the Data Generated
	Conclusion

	Tippett Studio and Nothing Real's Shake
	Robin Rowe

	Pessimism or Realism?
	David A. Bandel

	Embedded Linux Targets Telecom Infrastructure
	Rick Lehrbaum
	Linus Says “kyllä” to Preemptible Kernel
Patch!
	New Linux PDA Being Developed in
Bangalore

	It's Elemental—Natural Advantages
	Doc Searls

	The Role of Standards in Open Source
	Lawrence Rosen

	Letters
	Various
	Letters
	Well-Tamed Demon
	Propagating Disease?
	A Perl in the Spam
	Sex Clarified
	Netfilter Rescue
	GT Explained
	Speedier PHP
	Erratum

	UPFRONT
	Various
	The Largest Open-Source Event in Latin America
to Happen May 2-4. 2002
	Linux Bytes Other Markets: Linux Helps Make
Meals Special
	LJ Index—May 2002
	Sources:
	Netcraft: Steady as She Goes
	It's Trivial
	Stop the Presses: Linuxcare Founders Launch
Sputnik Wireless Network
	They Said It
	Next Move: Sell It with Linux for the Same
Price

	From the Editor
	Richard Vernon

	Best of Tech Support
	Various
	Best of Technical Support
	Permissions Change on /etc
	I Do Believe in /dev/st0!
	Routing to ppp0
	Die Process, Die, Die
	I Have No Valid Modes and I Must startx
	DragonLinux almost Boots
	Teaching Red Hat Japanese

	New Products
	Heather Mead
	New Products
	VT100 Set-Top Box
	PortServer CM
	CrossOver Plugin v1.1
	Desktop/LX
	PS-R1242, Dual Xeon 1U Server
	NASAS-2040
	SnapGear PRO+

